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High-order Absorbing Boundary Conditions (ABCs), applied on a rectangular artificial com-
putational boundary that truncates an unbounded domain, are constructed for a general
two-dimensional linear scalar time-dependent wave equation which represents acoustic
wave propagation in anisotropic and subsonically convective media. They are extensions
of the construction of Hagstrom, Givoli and Warburton for the isotropic stationary case.
These ABCs are local, and involve only low-order derivatives owing to the use of auxiliary
variables on the artificial boundary. The accuracy and well-posedness of these ABCs is ana-
lyzed. Special attention is given to the issue of mismatch between the directions of phase
and group velocities, which is a potential source of concern. Numerical examples for the
anisotropic case are presented, using a finite element scheme.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The need for artificial computational boundaries in the solution of exterior wave problems, called ‘‘absorbing boundaries”
among other names, arises quite often in various fields of application; acoustics, solid-earth geophysics and oceanography
are important examples. It is remarkable that after more than three decades of research on the subject there are still a pleth-
ora of unresolved questions. Nonetheless, for isotropic problems in uniform media, methods which combine guaranteed
accuracy, low cost, and geometric flexibility are now available. Here we take the first steps to extend these methods to more
complex situations.

Since the mid 1990s two classes of methods have emerged as especially powerful; see, e.g., the review articles [1] and [2].
The first one is the Perfectly Matched Layer (PML) method, devised by Bérenger [3] in 1994 and since then further developed,
analyzed and used by many authors. The second method is that of using high-order Absorbing Boundary Conditions (ABCs),
which are local and involve no high derivatives. The first such ABC was devised by Collino [4] in 1993, and a few other for-
mulations followed by other authors.
. All rights reserved.

x: +1 972 829 2030.
ache), givolid@aerodyne.technion.ac.il (D. Givoli), thagstrom@smu.edu (T. Hagstrom).

http://dx.doi.org/10.1016/j.jcp.2009.10.012
mailto:eliane.becache@inria.fr
mailto:givolid@aerodyne.technion.ac.il
mailto:thagstrom@smu.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


1100 E. Bécache et al. / Journal of Computational Physics 229 (2010) 1099–1129
Although usually derived by very distinct analyses, recent work has shown that, on the discrete level, the two methods
are in fact quite closely related. In particular, it is shown in [5] how to design a nonstandard PML with a purely imaginary
mesh continuation to exactly annihilate propagating waves at any incidence angle. This nonstandard PML is formally equiv-
alent to the high-order ABCs proposed by Hagstrom and Warburton [6], which will be the approach taken here. The connec-
tion with PML will be further discussed when the proposed conditions take concrete form.

The use of ABCs has been very popular since the early 1970s – see the survey in [7] – but the development pioneered by
Collino is the ability to implement ABCs of an arbitrarily high-order. In theory, some of the classical ABCs, such as the Eng-
quist–Majda ABCs [8], the Bayliss–Turkel ABCs [9] and the Higdon ABCs [10,11], can be defined up to any desired order. How-
ever, the appearance of increasingly high-order derivatives in these ABCs renders them impractical beyond a certain order,
typically 2 or 3. For example, the P-order Higdon ABC involves P-order derivatives in space and time, and is thus very incon-
venient for implementation when P is large.

In contrast, the high-order ABCs devised by Collino [4], Grote and Keller [12,13], Hagstrom and Hariharan [14] Guddati
and Tassoulas [15], Givoli and Neta [16,17] and Hagstrom and Warburton [6] involve no high derivatives owing to the
use of special auxiliary variables /jðj ¼ 1; . . . ; PÞ on the artificial boundary. The schemes are implemented for any order P,
which is simply an input parameter provided by the user. Moreover, the computational cost increases only linearly with
P. See the review [18].

It is worth mentioning that the present ABC differs from the Collino ABC in several ways. First, it is derived in a totally
different way which seems more amenable for generalizations. Second, it is more general in the same way that the original
Higdon condition is more general than the Engquist–Majda condition. Namely, our ABC involves free parameters, denoted
here aj;rj. In the isotropic case the parameters are related respectively to angles of incidence of propagating waves and decay
rates of evanescent modes that are to be exactly annihilated. The Collino ABC is a ‘‘diagonalized” version of the proposed ABC
for the simplest choice aj ¼ 1;rj ¼ 0 for all j (in the isotropic case). The extra freedom entailed in our ABC allows one to use
an adaptive scheme for choosing the best parameters dynamically during the solution process, as demonstrated in [19], or
determine them a priori using quadrature rules as in [20]. (The investigation in [19] also shows, based on the Diaz–Joly the-
ory [21], that for a non-adaptive scheme and short time computations the ‘‘Padé choice” aj � 1 is a very reasonable choice,
which will be used in the illustrative computations presented here. More optimal parameters as used in [20] will be tested in
subsequent work.) Third, the proposed ABC has the property that the norm of the auxiliary function /j is reduced with
increasing j [22]. This property, which is not shared by the Collino ABC (nor by the Givoli–Neta ABC), contributes to the en-
hanced stability of the ABC for very large values of P, and allows the use of the norm of /P (the last /j) as an a posteriori error
estimator, indicating whether the order P used is sufficiently large or needs to be increased [19].

The proposed ABC was originally devised for the standard scalar wave equation and for a first-order hyperbolic system
[6]. Later it was improved and extended in several ways in [23]. The extensions included application to a dispersive medium,
for which the Klein–Gordon wave equation governs, and to a stratified medium, either varying continuously or layered. Eva-
nescent modes in the exact solution were also taken into account. See [20,24] for analysis and error estimates for the ABC
based on complete expansion in propagating and decaying modes. The ABC was incorporated in both finite difference and
finite element schemes.

All the high-order ABCs mentioned above, with the exception of [25], were developed for time-dependent waves in iso-
tropic stationary media. In the present paper we extend our formulation to anisotropic and subsonically convective media.
The convective wave equation plays a crucial role in aeroacoustic applications [26]. The subsonic background flow may
be oriented in any direction with respect to the artificial boundary. Early important work on (low-order) ABCs for the con-
vective wave equation was done by Rudy and Strikwerda [27] and Bayliss and Turkel [28,29]. Anisotropic media are very
important in solid-earth geophysics [30]; although we consider here a scalar (‘‘acoustic”) equation and not the elastic equa-
tions (which are much more involved technically), the present investigation may serve as the first step in adapting the ideas
underlying our ABC formulation to elastodynamics.

We analyze the accuracy and well-posedness of the new sequence of ABCs for general anisotropic and convective media
in two dimensions. In doing so, we pay special attention to the issue of mismatch between the directions of phase and group
velocities. Bécache et al. [31] showed that this mismatch plays an important role in the stability analysis of the PML. In fact,
for some cases in anisotropic elasticity (and for convective acoustics without corrections) the PML becomes unstable due to
this mismatch. See also [32] on PML stability and the recent paper [33] where a stabilized layer with a special damping pro-
file is proposed (although without proof of still being perfectly matched). Here we show that the same stability issue arises in
the analysis of the high-order ABC.

Following is the outline of the rest of the paper. In the next section we state the problem governed by a general two-
dimensional scalar wave equation, from which the anisotropic wave equation and the convective wave equation may be ob-
tained as special cases. We indicate the constraints assumed on the coefficients of the governing equation. In Section 3 we
present the formulation of the high-order ABC for the general wave equation. This includes a discussion of the dispersion
relation, the slowness curve and the phase-group speed mismatch. We first derive the basic (zero-order) ABC and then, based
on it, the high-order ABC. In doing so we present its construction in a way slightly different and more illustrative than in
previous publications.

In Section 4 we calculate the reflection coefficient, first for the basic ABC and then for the high-order ABC for both prop-
agating and evanescent modes. In Section 5 we analyze the well-posedness of the new ABC. We do this in two ways. First we
use the Kreiss-criterion for well-posedness. Second, we present some energy estimates by constructing energy functionals
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which we show to be decreasing in time. For the anisotropic wave equation, we present a finite element formulation incor-
porating the new ABC in Section 6, and some numerical experiments in Section 7. We end with concluding remarks in Sec-
tion 8.

2. Statement of the problem

We consider the two-dimensional time-dependent wave equation
Lu � ða11@
2
x þ 2a12@xy þ a22@

2
y � @

2
t � 2b1@tx � 2b2@ty � mÞu ¼ 0; ð1Þ
in an unbounded domain R, for the unknown field uðx; y; tÞ. Here and elsewhere @x; @
2
x � @xx, etc., denote partial derivatives

with respect to the variables indicated. We assume that all the coefficients aij, bi and m are constant. It is assumed from the
outset that
a11a22 � a2
12 > 0; ð2Þ
so that in the steady state the equation is elliptic.
Physically, the wave Eq. (1) originates from the following one:
ðj11@
2
x þ 2j12@xy þ j22@

2
y � ð@t þ V1@x þ V2@yÞ2 � mÞu ¼ 0: ð3Þ
In (3) we can identify the medium properties. The j ¼ ½jij� is the anisotropy tensor of wave-speed squares, the Vi are the
background flow speed components, and m is the dispersion parameter (which is nonzero, for example, when the whole sys-
tem rotates). Thus, Eq. (3) represents anisotropic, convective and dispersive wave propagation. By comparing (3) with (1) we
have,
a11 ¼ j11 � V2
1; a12 ¼ j12 � V1V2; a22 ¼ j22 � V2

2; ð4Þ
b1 ¼ V1; b2 ¼ V2: ð5Þ
We assume some constraints on the parameters, in addition to (2), from physical reasons. First, the wave-speed square
tensor j must be positive definite, i.e.,
j11 > 0; j22 > 0; j11j22 � j2
12 > 0:
Second, we assume that the background flow is subsonic, namely V <
ffiffiffiffiffiffiffiffiffiffi
jmin
p

, where V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

1 þ V2
2

q
and jmin is the minimal

principal value of j. This amounts to requiring
b2
1 < j11; b2

2 < j22;
and by using (4) and (5) we get simply
a11 > 0; a22 > 0: ð6Þ
The conditions (2) and (6) together imply that the tensor a ¼ ½aij� is positive definite. Finally, we assume m P 0, so that the
term mu in (1) indeed represents physical wave dispersion.

Eq. (1) reduces to simpler wave equations in specific cases. In case of a stationary non-dispersive medium ðbi ¼ 0; m ¼ 0Þ,
(1) leads to the anisotropic wave equation
a11@
2
x uþ 2a12@xyuþ a22@

2
yu ¼ @2

t u: ð7Þ
For an isotropic non-dispersive medium, (1) leads to the convective wave equation
ðc2 � b2
1Þ@

2
x u� 2b1b2@xyuþ ðc2 � b2

2Þ@
2
yu ¼ @2

t uþ 2b1@txuþ 2b2@tyu; ð8Þ
where c is the wave speed, introduced by taking jij ¼ c2dij (dij being Kronecker’s delta). Finally, for an isotropic stationary
medium we get the Klein–Gordon (or dispersive) wave equation
c2r2u ¼ @2
t uþ mu: ð9Þ
If in addition the medium is non-dispersive ðm ¼ 0Þ, (9) reduces to the classical wave equation.
The wave Eq. (1) is appended by the initial conditions
uðx; y; 0Þ ¼ u0ðx; yÞ; @tuðx; y; 0Þ ¼ v0ðx; yÞ: ð10Þ
We assume that the support of the initial functions u0 and v0 is compact. If the domainR is bounded by a physical boundary
(say in the case of a semi-infinite domain or a wave-guide or a domain including a rigid scatterer) we also have to specify
boundary conditions on this boundary; to simplify the presentation we assume that no such physical boundary is present.

Now we truncate the unbounded domainR by introducing the artificial boundary C. This divides the original domain into
two subdomains: the computational domain X and the exterior domain D. We assume that X entirely encloses the support of
u0 and v0. Thus,
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Fig. 1. Setup for an exterior problem. Shown are the computational artificial boundary C, the computational domain X and the exterior domain D.
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uðx; y; 0Þ ¼ 0; @tuðx; y;0Þ ¼ 0 in D [ C:
The setup is shown in Fig. 1. In the next sections, we shall mostly consider CE, the ‘‘east” side of C (namely the right edge of X
in Fig. 1) whose normal and tangential directions are x and y, respectively. Analogous treatment can be applied to the other
three sides.

The problem in X consists of the wave Eq. (1), the initial conditions (10) and a boundary condition – an ABC – on C. Our
goal is to construct a high-order ABC that leads to a well-posed problem, is highly accurate, and can be practically imple-
mented to any order. The accuracy requirement in the present context means that the solution (on the continuous level)
of the new problem in X, using the ABC on C, is to be arbitrarily close to the restriction in X of the solution of the original
problem in R, for a sufficiently high ABC order P.

3. Formulation of the ABC

3.1. Dispersion relation, group velocity and slowness curve

For definiteness, in the discussion that follows we relate to the ‘‘east” side CE of the artificial boundary C whose outward
normal direction is x and tangent direction is y (see Fig. 1).

By definition, any ABC (or PML for that matter) has to be (approximately) transparent for outgoing waves and not admit
incoming waves. A crucial point is that the words outgoing and incoming relate to the sign of the group velocity which carries
the energy of the waves. In other words, the ABC must be satisfied by all waves whose x-component group velocity, Vgx, is
positive, and only by these waves. This requires some caution since traditionally the absorbing operators are designed
according to the phase velocity Vpx and not according to Vgx. Given a plane-wave with angular frequency x and wave vector
k ¼ fk1; k2g ¼ fkx; kyg, the two quantities Vpx and Vgx are defined by
Vpx ¼
x
k1
; Vgx ¼

@xðk1; k2Þ
@k1

: ð11Þ
As long as Vgx and Vpx have the same sign, as in the case for the standard isotropic wave equation (where in fact
Vpx ¼ Vgx ¼ c), no difficulty occurs. However, some anisotropic and convective media support waves associated with Vgx

and Vpx with opposite signs. In those cases the mismatch in sign may potentially render the ABC unstable.
In particular, consider a wave whose group velocity points inwardly (i.e., Vgx < 0) but whose phase velocity points out-

wardly (i.e., Vpx > 0). Such a wave is incoming, due to the direction of its group velocity, and hence should not satisfy the ABC.
However, if the ABC is designed to be satisfied by all waves with positive Vpx, this wave would satisfy the ABC. In other words,
the ABC would wrongly identify the wave as outgoing while it is in fact incoming, and this would lead to instability. How-
ever, by designing the ABC to allow only group-outgoing waves, one can avoid such instability. This is possible to do for the
general wave Eq. (1) as we show here.

We start by deriving the dispersion relation associated with (1). By applying the Laplace transform in time and the Fourier
transform in space to (1), or alternatively by substituting the plane-wave
u ¼ exp½iðxt � k1x� k2yÞ�; ð12Þ
in (1), we find
a11k2
1 þ ð2a12k2 þ 2b1xÞk1 þ a22k2

2 �x2 þ 2b2xk2 þ m ¼ 0: ð13Þ
This can be regarded as a quadratic equation for the x-wave-number k1 given the angular frequency x and the y-wave-num-
ber k2. Thus we get two roots for k1:
k1 ¼
1

a11
�a12k2 � b1x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða12k2 þ b1xÞ

2 � a11ða22k2
2 �x2 þ 2b2xk2 þ mÞ

q� �
: ð14Þ
Note that these roots can be real, corresponding to propagating modes, or complex, corresponding to evanescent modes.
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For the propagating modes, the first question that we should ask is which of the two roots corresponds to an outgoing
wave in the group velocity sense, i.e., to a wave with Vgx > 0. As promoted by Bécache et al. [31], a good way to visualize
this issue is by means of the slowness diagram. For a given plane-wave, the slowness K is the inverse of the phase velocity,
namely K ¼ 1=Vp ¼ k=x, where k ¼ ðk2

1 þ k2
2Þ

1=2 is the wave-number. Accordingly, the slowness vector K is defined by
K ¼ k
x
: ð15Þ
The dispersion relation (13) implies a relation between x and K ¼ ðK1; K2Þ ¼ ðKx; KyÞ. The slowness diagram is obtained by
drawing, for a fixed x (say x ¼ 1), the curve formed by the dispersion relation on the ðKx; KyÞ plane. In this diagram, one can
easily draw the directions of both the phase velocity and the group velocity for each point Q ¼ ðKx; KyÞ on the slowness
curve; the phase velocity direction is obtained by connecting the origin with the point Q, whereas the group velocity direc-
tion is determined by the outward normal vector at Q. See [31] for more details.

For an isotropic medium, the slowness curve is a circle, and the directions of the phase and group velocities coincide. For
an anisotropic medium they may differ. Fig. 2 shows a typical slowness diagram for the anisotropic wave Eq. (7). In Fig. 2(a)
we consider two points on the curve in the first quadrant. Both points correspond to positive x-phase speeds. However, one
point (marked by Vþgx) corresponds to a positive x-group speed, while the other (marked by V�gx) corresponds to a negative x-
group speed. Thus, the latter corresponds to a wave with a phase-group mismatch, as discussed above. A different perspec-
tive is shown in Fig. 2(b) for the same slowness curve. For a fixed Ky the dispersion relation yields two roots for Kx: one cor-
responds to a positive x-group speed (marked by Kþx ) and the other (marked by K�x ) corresponds to a negative x-group speed.

Fig. 3 shows a similar diagram for the convective wave Eq. (8).
A conclusion from Figs. 2 and 3 is that of the two roots of k1 in (14), the larger root (i.e., the one corresponding to the plus

sign) is always associated with a positive Vgx, namely with a group-outgoing wave. This provides us with an easy way to
control group-outgoing waves via the expression for the phase velocity (or the slowness), namely it allows us to work with
(14) and always pick the + sign in order to identify waves whose group velocity is outgoing. This ‘happy coincidence’ is,
unfortunately, lost in elasticity [31]. We emphasize that were we to derive an ABC which was satisfied by phase-outgoing
waves whose group velocity is incoming, this ABC would have been unstable.

Despite this convenient geometrical interpretation, we shall not make use of it in the derivation. Instead, we shall derive
the basic ABC in the next section directly by calculating the group velocity Vgx. It is possible to show that the two approaches
are completely equivalent and lead to exactly the same results.

We now identify those plane waves for which there is a phase-group velocity mismatch. We write
k1 ¼ k cos h; k2 ¼ k sin h; ð16Þ
yK

− +g

xK

xgxV V

Ky

Kx

−K xK+x

Fig. 3. Same as Fig. 2, but for a convective medium.
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Fig. 2. Slowness diagram for an anisotropic medium: (a) two group velocity vectors; and (b) roots of Kx for a fixed Ky.
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where h is the angle of incidence. We consider waves which are ‘‘phase-outgoing” with respect to the east boundary, namely
waves with jhj < p=2. Thus the phase velocity Vpx is positive, and the condition for mismatch is Vgx < 0. By differentiating
(13) with respect to k1 and using Vgx ¼ @x=@k1 we obtain
2a11k1 þ 2a12k2 þ 2b1xþ 2b1k1Vgx � 2xVgx þ 2b2k2Vgx ¼ 0: ð17Þ
By substituting (16) in (17) we find
VgxðhÞ ¼ b1 þ
b2

1 þ a11 þ ðb1b2 þ a12Þ tan hffiffiffiffiffiffiffiffi
IðhÞ

p ; ð18Þ
where
IðhÞ ¼ b2
1 þ a11 þ 2ðb1b2 þ a12Þ tan hþ ðb2

2 þ a22Þ tan2 hþ m=ðk2 cos2 hÞ: ð19Þ
From this we deduce that the condition for phase-group mismatch is
b1

ffiffiffiffiffiffiffiffi
IðhÞ

p
þ b2

1 þ a11 þ ðb1b2 þ a12Þ tan h < 0: ð20Þ
For a stationary isotropic medium ðb1 ¼ b2 ¼ a12 ¼ 0;a11 ¼ a22 ¼ c2Þ the general condition (20) reduces to a11 ¼ c2 < 0 which
is impossible. Hence, in the isotropic case there is no phase-group mismatch. For a stationary anisotropic medium
ðb1 ¼ b2 ¼ 0Þ we find from (20) that the condition for mismatch is
a11 þ a12 tan h < 0: ð21Þ
If a12 ¼ 0 (orthotropy in the ðx; yÞ directions) this never occurs. If a12 – 0, this will hold if both a12 tan h < 0 and
a11 < ja12 tan hj. For a convective isotropic non-dispersive medium, (20) and (19) reduce to
c þ b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 h

p
< 0: ð22Þ
If b1 > 0, i.e., at an outflow boundary, this never holds, namely there is no phase-group mismatch. If b1 < 0, i.e., at an inflow
boundary, (22) yields
tan2 h >
c
b1

� �2

� 1: ð23Þ
The right side is always positive, since in a subsonic regime b1 < c. Making use of a trigonometric identity, the condition (23)
reduces to
cos h <
jb1j

c
� jM1j; ð24Þ
where M1 is the Mach number in the x direction.
We note that in the stationary case, the presence of wave dispersion ðm > 0Þ does not affect the question of phase-group

mismatch. On the other hand, in the convective case it does. If m > 0 then (24) is replaced by
cos h < jM1j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m=ðckÞ2

q
:

We see that the presence of dispersion triggers phase-group mismatch for smaller angles h; thus dispersion has a destabi-
lizing effect in this sense.

Finally we consider the evanescent modes. Now it is simpler to rewrite (14) as
ik1 ¼ �i
a12

a11
k2 � i

b1

a11
x� r; r > 0: ð25Þ
Using (25) in (12), it is clear that the outgoing solution is identified with the decaying solution corresponding to the ‘‘+” sign
in (25).

3.2. Basic ABC

In this section we derive a zero-order ABCs for the general wave Eq. (1) that will serve as the basis for the high-order ABC
to be developed later.

We first write the group velocity x-component Vgx in terms of the slowness components K1 and K2. From (15) we have
Ki ¼
ki

x
: ð26Þ
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Eqs. (17) and (26) lead to
Vgx ¼ �
a11K1 þ a12K2 þ b1

b1K1 þ b2K2 � 1
:

We can easily invert this relation to obtain
K1 ¼
�A1 þ A2Vgx

a11 þ b1Vgx
; ð27Þ
with
A1 ¼ a12K2 þ b1; A2 ¼ 1� b2K2:
Using (26) and (27), the quadratic Eq. (13) for k1 can also be written as a quadratic equation for Vgx, i.e.,
c2V2
gx þ 2c1Vgx þ c0 ¼ 0; ð28Þ
where c2 ¼ a11A2
2 þ 2b1A1A2 þ b2

1A3; c1 ¼ �b1A2
1 þ a11b1A3; c0 ¼ �a11A2

1 þ a2
11A3; A3 ¼ a22K2

2 þ 2b2K2 � 1þ m
x2. The solution

of (28) is
ðVgxÞ� ¼
�c1 �

ffiffiffiffi
D
p

c2
; D ¼ c2

1 � c0c2:
Since we are interested in outgoing waves, we pick the positive root:
ðVgxÞþ ¼
�c1 þ

ffiffiffiffi
D
p

c2
: ð29Þ
Note that the procedure above guarantees that the waves thus identified are outgoing ‘‘in the correct sense,” namely that
their group speed component in the direction normal to the boundary is positive.

Up to this point we have made no approximation. Now we approximate the square root in (29) by a Taylor expansion to
first-order in K2. To this end we assume that jK2j � 1. This corresponds to the usual requirement that the basic ABC be accu-
rate for waves with almost normal incidence. In addition we will assume that m=x2 ¼ OðK2

2Þ. This assumption guarantees
that (14) yields two real roots, which correspond to propagating waves.

Under these assumptions we get, after some algebra,
ffiffiffiffi
D
p
¼ ðk1 � 2k2K2Þ

ffiffiffiffiffi
k1

p
þ OðK2

2Þ; ð30Þ
where
k1 ¼ a11 þ b2
1 > 0; k2 ¼ b2a11 � b1a12: ð31Þ
Substituting (30) in (29) and the result in (27) yields
Kþ1 ¼
f3 þ f4K2 þ OðK2

2Þ
f1 þ f2K2 þ OðK2

2Þ
; ð32Þ
where Kþ1 is the root of K1 which corresponds to the positive group velocity Vþgx, and
f1 ¼ k3=2
1 ðb1 þ k1=2

1 Þ > 0; f2 ¼ �2k2k
1=2
1 ðb1 þ k1=2

1 Þ;
f3 ¼ k3=2

1 ; f4 ¼ �k1=2
1 ð2k2 þ b2k1Þ � k1ða12 þ b1b2Þ:
Eq. (32) can be further approximated by a Taylor expansion of the ratio, still consistently retaining only terms up to first-
order in K2, to yield
Kþ1 ¼
1
f1

f3 þ f4 �
f3f2

f1

� �
K2

� �
¼ 1

a11
k1=2

1 � b1 � a12 þ
k2

k1=2
1

 !
K2

" #
: ð33Þ
Some algebra is involved in deriving the second equality in (33) from the first. Using (26) and the definitions (31), the last
result gives the new linearized dispersion relation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a11 þ b2
1

q
k1 þ

a12

a11
k2 þ

b1

a11
x

� �
� 1þ b2

1

a11

 !
x� b2 �

a12b1

a11

� �
k2

 !
¼ 0;
where we have omitted the + notation from k1 for clarity.
Finally we are in a position to transform the last result back into physical space ðk1 ! i@x; k2 ! i@y;x ! �i@tÞ and

thus to obtain the basic ABC
B0u �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 þ b2

1

q
@x þ b2 �

a12b1

a11
þ a12

a11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 þ b2

1

q� �
@y þ 1þ b2

1

a11
� b1

a11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 þ b2

1

q !
@t

" #
u ¼ 0 on CE: ð34Þ
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Exactly the same result may be obtained by approximating the square root in the expression for k1 in (14), and choosing the
plus sign in that expression. The justification in doing this comes from our observation (see previous section) that of the two
roots of k1 in (14), the larger root is always associated with a positive Vgx.

The expression for the basic ABC (34) reduces to simpler expressions for some special cases. For the anisotropic wave equa-
tion (7), (34) reduces to
B0u �
ffiffiffiffiffiffiffi
a11
p

@x þ
a12ffiffiffiffiffiffiffi
a11
p @y þ @t

� �
u ¼ 0 on CE:
For the convective wave equation (8), Eq. (34) reduces (after further simplification) to
B0u � ½ðc þ b1Þ@x þ b2@y þ @t �u ¼ 0 on CE:
For the dispersive wave equation (9), and for the classical wave equation ðm ¼ 0Þ, (34) reduces to
B0u � ½c@x þ @t�u ¼ 0 on CE: ð35Þ
The latter ABC is the classical 0th-order boundary condition, often called the Sommerfeld-like ABC.
It can easily be shown that in the absence of dispersion ðm ¼ 0Þ the general ABC (34) is exact for a plane-wave with normal

incidence ðK2 ¼ 0Þ. This is quite obvious even without performing the algebra, since the approximation we have made was
associated only with K2 and m. For angles of incidence close to normal this ABC generates a small reflection error, while for
oblique incidence it may generate large spurious reflection. This is the motivation for seeking higher-order ABCs.

Higdon, who considered the Klein–Gordon Eq. (9) in [11], constructed ABCs which are exact for plane waves with given
angles of incidence. This led to a basic ABC extending (35), i.e.,
B0u � ½c@x þ a0@t �u ¼ 0 on CE: ð36Þ
Here 0 < a0 6 1 is a parameter which has to be chosen and which signifies the cosine of the incidence angle h. If a0 ¼ cos h,
the ABC (36) is exact. Of course, the incorporation of a parameter a0 – 1 in a zero-order ABC does not seem beneficial, since
in realistic problems there are many waves impinging the boundary simultaneously with different angles of incidence, and
moreover one does not know in advance what these angles are. However, the idea becomes meaningful for a high-order ABC
that involves many such parameters, which may be chosen in different ways [19]. To keep the same level of generality, we
incorporate a parameter a0 in our general ABC (34), although in this case a0 does not have as simple a physical meaning. To
do this, we rewrite the argument of the square root in (14) and recall that a11a22 � a2

12 > 0. Assuming a real root we find:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða12k2 þ b1xÞ

2 � a11ða22k2
2 �x2 þ 2b2xk2 þ mÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 þ b2

1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

0 � D2
1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 þ b2

1

q
aD0; ð37Þ
where 0 < a 6 1 and
D0 ¼ x� a11b2 � a12b1

a11 þ b2
1

k2;

D2
1 ¼ ða11a22 � a2

12Þða11 þ b2
1Þ þ ða11b2 � a12b1Þ

2
� � k2

2

ða11 þ b2
1Þ

2 þ
a11m

a11 þ b2
1

:

Thus we may approximate the root by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 þ b2

1

q
a0D0. Keeping track of a0 throughout the derivation, we obtain an extended

expression for the ABC (34), i.e.,
B0u � ðn@x þ g0@y þ s0@tÞu ¼ 0 on CE; ð38Þ
where
n ¼
ffiffiffiffiffi
k1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 þ b2

1

q
; ð39Þ

g0 ¼
1

a11
a0k2 þ a12

ffiffiffiffiffi
k1

p� �
¼ a0 b2 �

a12b1

a11

� �
þ a12

a11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 þ b2

1

q
; ð40Þ

s0 ¼
1

a11
a0k1 � b1

ffiffiffiffiffi
k1

p� �
¼ a0 1þ b2

1

a11

 !
� b1

a11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 þ b2

1

q
: ð41Þ
Here k1 and k2 are defined by (31). This ABC reduces to (34) when a0 ¼ 1 and reduces to (36) for a stationary isotropic
medium.

Similarly, we can design a basic operator which is exact for a particular evanescent mode. Using (25) we write:
ik1 � �i
a12

a11
k2 � i

b1

a11
xþ r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a11 þ b2
1

q ; r0 > 0: ð42Þ
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This yields:
R0u � n@x þ n
a12

a11
@y � n

b1

a11
@t þ r0

� �
u ¼ 0 on CE: ð43Þ
3.3. Auxiliary variables and recursive relations

In the remainder of Section 3 we shall construct the high-order ABC. The motivation for doing this is that with our con-
struction, the reflection coefficient generated by waves impinging on C will decrease exponentially fast with the order of the
ABC. This will be shown in Section 4.

The construction of the high-order ABCs of the type considered here involves two major steps. The first step is to devise a
boundary operator which is a product of a desired number of operators of the basic forms (38) and (43). This is the original
idea of Higdon [10,11], which leads to a ‘‘theoretical” high-order ABC. It is ‘‘theoretical” because it involves increasingly high
spatial and temporal derivatives. The second step is to render this ABC practical by eliminating all the high derivatives. This
is made possible by introducing a sequence of auxiliary variables /j which obey certain relations. This second step was pro-
posed by Givoli and Neta [16,17] and Hagstrom and Warburton [6].

To motivate the construction method for the high-order ABC, we start by considering the isotropic wave equation (9) and
recalling Higdon’s ABC devised for it [10,11]:
YP

j¼0

ðaj@t þ c@xÞ
" #

u ¼ 0 on CE: ð44Þ
Note that the Pth-order operator in (44) is a product of P þ 1 basic operators of the form B0 in (36). This ABC involves normal
and temporal derivatives of order P þ 1, and thus is impractical for large P. To get rid of the high derivatives, Givoli and Neta
[16] rewrote (44) in the following manner:
ða0@t þ c@xÞu ¼ /1 in DE; ð45Þ
ðaj@t þ c@xÞ/j ¼ /jþ1; j ¼ 1; . . . ; P in DE; ð46Þ
/Pþ1 ¼ 0 on CE: ð47Þ
Here the /j are auxiliary variables, and (45)–(47) are the recursive relations among them. The domain DE is the east side of the
exterior domain, namely DE ¼ DES [ DEC [ DEN , as shown in Fig. 4, and is understood to include the boundary CE. It is impor-
tant to note that the relations (45) and (46) are actually definitions of the auxiliary variables /1; . . . ;/Pþ1 in the domain DE.
The condition (47) which holds only on the boundary CE is the additional information which turns (45)–(47) into a boundary
condition. The /j satisfy zero initial conditions, i.e.,
/jðx; y;0Þ ¼ 0; @t/jðx; y;0Þ ¼ 0; j ¼ 1; . . . ; P in DE: ð48Þ
It is easy to see that (45)–(47) is equivalent to (44).
Before presenting the alternative construction used here, we observe that although Eqs. (45)–(47) do not involve high

derivatives, they do involve the normal derivatives @x/j, and hence they do not constitute a practical ABC themselves. Since
the /j are to be discretized on the boundary CE alone, we may allow their temporal and tangential derivatives but not their
normal derivative to appear in the ABC. Thus (45)–(47) have to be manipulated in order to get rid of the @x/j. We shall see
how this is done later.

The Hagstrom–Warburton formulation for the isotropic wave equation [6] is based on recursive relations which consti-
tute a modification to (45)–(47), i.e.,
D

D

E

ES

EN

D

EC
Γ

Ω

y

x

Fig. 4. Exterior domains related to the definition of the auxiliary variables /j.
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ða0@t þ c@xÞu ¼ a0@t/1 in DE; ð49Þ
ðaj@t þ c@xÞ/j ¼ ðaj@t � c@xÞ/jþ1; j ¼ 1; . . . ; P in DE; ð50Þ
/Pþ1 ¼ 0 on CE: ð51Þ
A primary motivation for this modification is the fact that the auxiliary variables in (45)–(47) are obtained by successive dif-
ferentiations and thus may suffer from an increasing loss of smoothness; here we counteract that possibility by imposing a
recursion with balanced differentiations. In addition, we note that if the auxiliary variable indices are reinterpreted as grid
indices the new recursion takes the form of a box scheme approximation to a nonstandard PML with ‘‘mesh width”
H�1

jþ1=2 ¼
aj

2 @t:
@x
/j þ /jþ1

2

� �
¼

/jþ1 � /j

Hjþ1=2
: ð52Þ
We now proceed to obtain a single condition from (49)–(51) in terms of u alone (i.e., a counterpart of (44)). To this end, we
apply the operator ða1@t þ c@xÞ to both sides of (49) and use (50) with j ¼ 1 to obtain
ða1@t þ c@xÞða0@t þ c@xÞu ¼ a0@tða1@t � c@xÞ/2: ð53Þ
Now we apply the operator ða2@t þ c@xÞ to both sides of (53) and use (50) with j ¼ 2. Continuing in this manner up to j ¼ P we
obtain
YP

j¼0

ðaj@t þ c@xÞ
" #

u ¼ a0@t

YP

j¼1

ðaj@t � c@xÞ
" #

/Pþ1: ð54Þ
Note that we cannot deduce that the right side of (54) vanishes based on (51), since (51) does not tell us anything about
@x/Pþ1 on CE. Next we apply to both sides of (54) the operator appearing on the left side of (54) but starting the product from
j ¼ 1, to get
ða0@t þ c@xÞ
YP

j¼1

aj@t þ c@x
	 
2

" #
u ¼ a0@t

YP

j¼1

a2
j @

2
t � c2@2

x

� �" #
/Pþ1: ð55Þ
Now we make use of a crucial fact, namely that /Pþ1 satisfies the same wave Eq. (9) as u does. In fact, all the auxiliary vari-
ables /j satisfy this equation, i.e.,
½c2ð@2
x þ @

2
yÞ � ð@

2
t þ mÞ�/j ¼ 0; j ¼ 1; . . . ; P þ 1 in DE: ð56Þ
We prove this in Appendix A (for the general wave Eq. (1)). Making use of (56), we can eliminate the @2
x appearing on the

right side of (55) and write it in terms of temporal and tangential derivatives only. Then we can use (51) to deduce that
the right side of (55) vanishes on CE, namely
ða0@t þ c@xÞ
YP

j¼1

ðaj@t þ c@xÞ2
" #

u ¼ 0 on CE: ð57Þ
This boundary condition should be contrasted with the original Higdon condition (44). The squaring of all the j P 1 terms in
(57) leads to an ABC with higher accuracy.

To extend the recursive relations (49)–(51) to the case where the governing equation is the general wave equation (1), we
note that the form of the extended relations can be deduced from the basic ABC (38) in the same manner that the form of
(49)–(51) is deduced from (36). Including the evanescent mode operators (43) for completeness we find the extended rela-
tions to be
Bþ0 u ¼ B�0/1 in DE; ð58Þ
Bþj /j ¼ B�j /jþ1; j ¼ 1; . . . ; P in DE; ð59Þ
Rþj /Pþj ¼ R�j /Pþjþ1; j ¼ 1; . . . ;Q in DE; ð60Þ
/PþQþ1 ¼ 0 on CE; ð61Þ
where the operators appearing in (58) and (59) are defined by
Bþj � n@x þ gþj @y þ sþj @t ; j P 0; ð62Þ
B�j � �n@x þ g�j @y þ s�j @t ; j P 0; ð63Þ
B�0 ¼ g�0@y þ s�0@t; ð64Þ
R�j � �ðn@x þ g@y þ s@tÞ þ rj; j P 0; ð65Þ
with
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n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 þ b2

1

q
; g ¼ a12

a11
n; s ¼ � b1

a11
n; ð66Þ

g�j ¼ aj b2 �
a12b1

a11

� �
� g; ð67Þ

s�j ¼ aj 1þ b2
1

a11

 !
� s; ð68Þ

g�0 ¼ a0 b2 �
a12b1

a11

� �
; ð69Þ

s�0 ¼ a0 1þ b2
1

a11

 !
: ð70Þ
The operator Bþ0 (obtained by setting j ¼ 0 in (62)) is identical to the operator B0 given by (38). It can be shown that (58)–(61)
are equivalent to the boundary condition
Bþ0
YP

j¼1

ðBþj Þ
2

" # YQ
j¼1

ðRjÞ2
" #

u ¼ 0 on CE; ð71Þ
which extends (57) to the general case.
Now we make a few remarks concerning these recursive relations.

Remark 1. As mentioned previously, the parameters 0 < aj 6 1 may be chosen in several ways [19]. The simplest is the
‘‘Padé choice” aj ¼ 1 for all j with no evanescent mode terms ðQ ¼ 0Þ, which was shown in [19] to be generally a reasonable
choice for short time computations. In subsequent work we will test optimized combinations of fajg and frjg. Excellent
results were obtained in [20] by choosing the fajg to be cosines of Gauss–Radau quadrature nodes in 0; p2

� �
and the frjg to be

Yarvin–Rokhlin nodes [34]. See also the discussion in [23] on the choice of values of rj.

Remark 2. The derivation above relates to the east edge of the boundary CE. A similar derivation applies to the three other
edges. Each edge is associated with its own set of auxiliary variables and recursive relations. Corner conditions are needed to
connect among these different sets [6,22,20]. Corner conditions for the general wave equation should be developed by
extending the corner conditions given in these references, but we shall not do so in the present paper.

Remark 3. The fact that the present formulation possesses enhanced stability compared to the Givoli–Neta condition [22]
(and not only enhanced accuracy owing to the squaring in (71)) has to do with the fact that the derivatives in (49) and (50)
are of uniform order in contrast to (45) and (46) [35].

Remark 4. Similarly to what has been commented on (45)–(47), the recursive relations (58)–(61) do not constitute a prac-
tical ABC themselves, because (59) involves the normal derivative @x/j. In the next section we shall derive a high-order ABC
that is free from such derivatives, focusing for simplicity on the case Q ¼ 0.

Remark 5. A reinterpretation of the auxiliary variable indices as grid indices again leads to a ‘‘PML-like” formulation. How-
ever, this formulation cannot be simply expressed in terms of frequency-dependent mesh spacings. This is not surprising as
known stable formulations of PML for anisotropic systems are also more complex than in the isotropic case; see [32].
3.4. High-order ABC

We now consider the recursive relations given by (59) for j P 1, assuming for now that Q ¼ 0. Our goal is to obtain new
relations which, in contrast to (59), do not involve the normal derivative @x/j. This would lead to a practical high-order ABC.
Thus, we would like to replace (58)–(61) by a condition of the form
Bþ0 u� B�0/1 ¼ 0 on CE; ð72Þ
Hj; j�1/j�1 þHj; j/j þHj; jþ1/jþ1 ¼ 0; j ¼ 1; . . . ; P on CE; ð73Þ
/0 � u; /Pþ1 ¼ 0 on CE; ð74Þ
where Hj; j�1;Hj; j and Hj; jþ1 are linear operators involving 2nd-order time and tangential derivatives, but not the normal
derivative.

In achieving this goal it is necessary to make use of the fact that all the auxiliary variables /j satisfy the same wave Eq. (1)
as u does, i.e.,
L/j ¼ 0; j ¼ 1; . . . ; P þ 1: ð75Þ
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This is proved in Appendix A. The next step is to manipulate (59) by using (75), thus getting rid of all the normal derivatives.
For this purpose it is convenient to write (75) (see (1)) in the form
ða11@
2
x þ 2a12@xy � 2b1@txÞ/j ¼ ð�a22@

2
y þ @

2
t þ 2b2@ty þ mÞ/j: ð76Þ
Here we wrote on the left side all the terms which involve the normal derivative @x, and on the right side all the terms that do
not involve @x.

Now we apply the operator Bþj to both sides of the jth relation in (59), and separately we also apply B�j�1 to the ðj� 1Þth
relation. The results are
Bþj B
þ
j /j ¼ Bþj B

�
j /jþ1; ð77Þ

B�j�1B
þ
j�1/j�1 ¼ B�j�1B

�
j�1/j: ð78Þ
This holds for j P 2. We multiply (77) by Cj and (78) by Dj, where Cj and Dj are yet undetermined constants, and we add the
two equations to obtain
ðCjBþj B
þ
j þ DjB�j�1B

�
j�1Þ/j ¼ CjBþj B

�
j /jþ1 þ DjB�j�1B

þ
j�1/j�1: ð79Þ
Let us now consider the operator on the left side of (79). By using (62) and (63) we get
CjBþj B
þ
j þ DjB�j�1B

�
j�1 ¼ Cjðgþj @y þ sþj @tÞ2 þ Cjn

2@2
x þ 2Cjðgþj @y þ sþj @tÞn@x þ Djðg�j�1@y þ s�j�1@tÞ2 þ Djn

2@2
x

� 2Djðg�j�1@y þ s�j�1@tÞn@x: ð80Þ
We would like this combination to be free from the normal derivative @x. We note that the first and fourth terms on the right
side of (80) are ‘‘harmless” because they do not involve @x. Thus, we have to replace the second, third, fifth and sixth terms by
an expression which does not involve @x either. This would be possible if these terms reduce to the operator on the left side of
(76), because then they can be replaced by the operator on the right side of (76) which is free of @x. Thus, we require
Cjn
2@2

x þ 2Cjðgþj @y þ sþj @tÞn@x þ Djn
2@2

x � 2Djðg�j�1@y þ s�j�1@tÞn@x ¼ a11@
2
x þ 2a12@xy � 2b1@tx: ð81Þ
We equate coefficients of equal derivatives (@2
x , @xy and @tx) and obtain three equations for the constants Cj and Dj. These

equations are linearly dependent, and it is possible to show that if Cj and Dj satisfy the @2
x equation and the @tx equation, then

they also satisfy the @xy equation. Solving the former two equations we obtain
For j P 2 : Cj ¼
a11s�j�1 � b1n

ðs�j�1 þ sþj Þn
2 ; Dj ¼

a11sþj þ b1n

ðs�j�1 þ sþj Þn
2 : ð82Þ
From (80), (81) and (76) we get
ðCjBþj B
þ
j þ DjB�j�1B

�
j�1Þ/j ¼ ðCjðgþj @y þ sþj @tÞ2 þ Djðg�j�1@y þ s�j�1@tÞ2 � a22@

2
y þ @

2
t þ 2b2@ty þ mÞ/j: ð83Þ
Thus we have managed to turn the left side of (79) into an expression which does not involve the normal derivative.
Now we consider the right side of (79). Simple calculation, using (62) and (63), yields
Bþj B
�
j ¼ ðsþj @t þ gþj @yÞðs�j @t þ g�j @yÞ � n2@2

x þ n½ðs�j þ sþj Þ@tx þ ðg�j þ gþj Þ@xy�: ð84Þ
As before, we would like the terms in (84) that involve @x to reduce to the operator on the left side of (76). Thus, we ask about
the existence of a constant Ej such that
Ejf�n2@2
x þ n½ðs�j þ sþj Þ@tx þ ðg�j þ gþj Þ@xy�g ¼ a11@

2
x þ 2a12@xy � 2b1@tx: ð85Þ
Of course, each of the coefficients of @2
x ; @tx and @xy should be equal on both sides, for (85) to hold identically. It is easy to show

that the constant Ej exists and that its value is
Ej ¼ �ðCj þ DjÞ ¼ �
a11

n2 :
From (84), (85) and (76) we then have
Bþj B
�
j /jþ1 ¼ sþj @t þ gþj @y

� �
s�j @t þ g�j @y

� �
� n2

a11
�a22@

2
y þ @

2
t þ 2b2@ty þ m

� �" #
/jþ1: ð86Þ
Thus, we managed to write the first term on the right side of (79) such that it does not involve the normal derivative. Now,
from the last result we also get immediately
B�j�1B
þ
j�1/j�1 ¼ Bþj�1B

�
j�1/j�1 ¼ sþj�1@t þ gþj�1@y

� �
s�j�1@t þ g�j�1@y

� �
� n2

a11
�a22@

2
y þ @

2
t þ 2b2@ty þ m

� �" #
/j�1: ð87Þ
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Thus, we also managed to write the second term on the right side of (79) such that it does not involve the normal derivative.
By using (83), (86) and (87), we are now in a position to rewrite (79) such that it does not involve the normal derivative.

The end result, which is the desired jth ABC equation for j P 2, has the form (73) with
For j P 2 :

Hj; j�1 ¼ �Dj ðsþj�1@t þ gþj�1@yÞðs�j�1@t þ g�j�1@yÞ �
n2

a11
ð�a22@

2
y þ @

2
t þ 2b2@ty þ mÞ

" #
; ð88Þ

Hj; j ¼ Cjðgþj @y þ sþj @tÞ2 þ Djðg�j�1@y þ s�j�1@tÞ2 � a22@
2
y þ @

2
t þ 2b2@ty þ m; ð89Þ

Hj; jþ1 ¼ �Cj ðsþj @t þ gþj @yÞðs�j @t þ g�j @yÞ �
n2

a11
ð�a22@

2
y þ @

2
t þ 2b2@ty þ mÞ

" #
: ð90Þ
It remains to find the ABC equation for j ¼ 1. From (58) and (59) we have
Bþ0 u ¼ B�0/1; Bþ1 /1 ¼ B�1 /2: ð91Þ
We apply C1Bþ1 to the second equation and D1B�0 to the first equation and subtract them, to obtain
ðC1Bþ1B
þ
1 þ D1B�0B

�
0Þ/1 ¼ C1Bþ1B

�
1 /2 þ D1B�0B

þ
0 u:
This is similar to (79) (but note that it cannot be obtained from (79) by setting j ¼ 1 due to the operator B�0 appearing here
which is different than B�0 ). We proceed along the same lines as in the case j P 2. The end result is
H1;0 ¼ �D1 ðsþ0 @t þ gþ0 @yÞðs�0 @t þ g�0 @yÞ �
n2

a11
ð�a22@

2
y þ @

2
t þ 2b2@ty þ mÞ

" #
; ð92Þ

H1;1 ¼ C1ðgþ1 @y þ sþ1 @tÞ2 þ D1ðg�0 @y þ s�0 @tÞðg�0@y þ s�0@tÞ � a22@
2
y þ @

2
t þ 2b2@ty þ m; ð93Þ

H1;2 ¼ �C1 ðsþ1 @t þ gþ1 @yÞðs�1 @t þ g�1 @yÞ �
n2

a11
ð�a22@

2
y þ @

2
t þ 2b2@ty þ mÞ

" #
; ð94Þ
where
C1 ¼
a11

n2 ; D1 ¼
2

n2s�0
ða11sþ1 þ nb1Þ: ð95Þ
We note that (92)–(94) are analogous to (88)–(90) except for the second term on the right of (93) which involves g�0 and s�0.
The derivation of the boundary system in the presence of the evanescent mode recursions ðQ > 0Þ would proceed along

similar lines. Clearly the equations derived above would still hold for j 6 P. Also, for j > P þ 1 an analogous system can be
derived. A complication arises in coupling the separate propagating mode and evanescent mode subsystems. In [23] we
accomplished this by adding a bridge variable. The details of including evanescent mode corrections for the general wave
equation considered here will be left to subsequent work; the numerical experiments here will be carried out for Q ¼ 0.

3.5. Special cases

3.5.1. Isotropic dispersive medium
In the case of isotropic stationary dispersive medium, the parameters of the wave operator L in (1) are restricted by

aij ¼ c2dij and b1 ¼ b2 ¼ 0. In this case n ¼ c;g�0 ¼ g�j ¼ gþj ¼ 0; sþj ¼ s�j ¼ aj; s�0 ¼ a0, and the general results above reduce
to the following:
Bþj ¼ c@x þ aj@t ; ð96Þ
B�j ¼ �c@x þ aj@t;

B�0 ¼ a0@t ;

H1;0 ¼
2a1

a0
½ð1� a2

0Þ@
2
t � c2@2

y þ m�; ð97Þ

H1;1 ¼ ða2
1 þ 2a0a1 þ 1Þ@2

t � c2@2
y þ m;

H1;2 ¼ ð1� a2
1Þ@

2
t � c2@2

y þ m; ð98Þ
For j P 2 :

Hj; j�1 ¼ Dj½ð1� a2
j�1Þ@

2
t � c2@2

y þ m�; ð99Þ
Hj; j ¼ ðCja2

j þ Dja2
j�1 þ 1Þ@2

t � c2@2
y þ m;

Hj; jþ1 ¼ Cj½ð1� a2
j Þ@

2
t � c2@2

y þ m�; ð100Þ

Cj ¼
aj�1

aj�1 þ aj
; Dj ¼

aj

aj�1 þ aj
: ð101Þ
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If we use these operators in (72) and (73) while multiplying the j P 2 equations (corresponding to (99) and (100)) by
ðaj�1 þ ajÞ and the j ¼ 1 equation (corresponding to (97) and (98)) by a0, we reproduce the ABC obtained in [23]:
ða0@t þ c@xÞu ¼ a0@t/1; ð102Þ

lj; j�1@
2
t /j�1 þ lj; j@

2
t /j þ lj; jþ1@

2
t /jþ1 ¼ c2ðmj; j�1@

2
y/j�1 þmj; j@

2
y/j þmj; jþ1@

2
y/jþ1Þ � mðmj; j�1/j�1 þmj; j/j þmj; jþ1/jþ1Þ; j ¼ 1; . . . ; P; ð103Þ

/0 � u; /Pþ1 ¼ 0; ð104Þ
where the coefficients for j ¼ 1 are
l1;0 ¼ 2a1ð1� a2
0Þ; l1;1 ¼ a0ð1þ 2a0a1 þ a2

1Þ; l1;2 ¼ a0ð1� a2
1Þ; ð105Þ

m1;0 ¼ 2a1; m1;1 ¼ a0; m1;2 ¼ a0; ð106Þ
and the coefficients for j ¼ 2; . . . ; P are
lj; j�1 ¼ ajð1� a2
j�1Þ; lj; j ¼ ajð1þ a2

j�1Þ þ aj�1ð1þ a2
j Þ; lj; jþ1 ¼ aj�1ð1� a2

j Þ; ð107Þ
mj; j�1 ¼ aj; mj; j ¼ aj�1 þ aj; mj; jþ1 ¼ aj�1: ð108Þ
If in addition we set m ¼ 0 we reproduce the original basic Hagstrom–Warburton ABC for the classical wave equation [6].

3.5.2. Anisotropic medium
In the case of anisotropic stationary medium, the parameters of the wave operator L in (1) are restricted by b1 ¼ b2 ¼ 0. In

this case n ¼ ffiffiffiffiffiffiffi
a11
p

; sþj ¼ s�j ¼ aj;gþj ¼ a12=
ffiffiffiffiffiffiffi
a11
p

;g�j ¼ �a12=
ffiffiffiffiffiffiffi
a11
p

; s�0 ¼ a0;g�0 ¼ 0, and Cj and Dj are the same as in (101). Then
it can be shown that
Bþj ¼
ffiffiffiffiffiffiffi
a11
p

@x þ a12=
ffiffiffiffiffiffiffi
a11
p	 


@y þ aj@t ; ð109Þ
B�j ¼ �

ffiffiffiffiffiffiffi
a11
p

@x � a12=
ffiffiffiffiffiffiffi
a11
p	 


@y þ aj@t ; ð110Þ
B�0 ¼ a0@t: ð111Þ
This implies, after some algebra, that the first ABC equation is
a0@t þ
ffiffiffiffiffiffiffi
a11
p

@x þ
a12ffiffiffiffiffiffiffi
a11
p @y

� �
u ¼ a0@t/1; ð112Þ
and that the formulas (97)–(101) as well as (103)–(108) hold in the anisotropic case too (with m ¼ 0 if there is no dispersion),
but instead of the isotropic definition of the wave speed c2 ¼ a11 ¼ a22 we have here the ‘‘effective wave speed” c ¼ ce, where
c2
e � a22 1� a2

12

a11a22

� �
¼ a11a22 � a2

12

a11
: ð113Þ
It is interesting to note that in the orthotropic case ða12 ¼ 0Þ two different wave speeds are involved in this ABC:
ffiffiffiffiffiffiffi
a11
p

which
appears in (112) and the effective speed ce defined above which appears in (103).

3.5.3. Convective medium
In the case of a non-dispersive isotropic medium moving with constant subsonic velocity V ¼ fVig, the parameters of the

wave operator L in (1) are restricted by a11 ¼ c2 � V2
1; a12 ¼ �V1V2; a22 ¼ c2 � V2

2; b1 ¼ V1; b2 ¼ V2; m ¼ 0, where c is the
wave speed. For convenience we define the Mach numbers
M1 ¼
V1

c
; M2 ¼

V2

c
: ð114Þ
Since the flow is subsonic, jM1j < 1 and jM2j < 1. Then n ¼ c; sþj ¼ ðaj �M1Þ=ð1�M2
1Þ; s�j ¼ ðaj þM1Þ=ð1�M2

1Þ; gþj ¼
V2sþj ; g�j ¼ V2s�j ; s�0 ¼ a0=ð1�M2

1Þ; g�0 ¼ V2s�0; Cj ¼ ð1�M2
1Þaj�1=ðaj þ aj�1Þ and Dj ¼ ð1�M2

1Þaj=ðaj þ aj�1Þ. This leads to
Bþj ¼ c@x þ ½ðaj �M1Þ=ð1�M2
1Þ�ðV2@y þ @tÞ;

B�j ¼ �c@x þ ½ðaj þM1Þ=ð1�M2
1Þ�ðV2@y þ @tÞ;

B�0 ¼ ½a0=ð1�M2
1Þ�ðV2@y þ @tÞ;

H1;0 ¼
2a1

a0

M2
1 � a2

0

1�M2
1

ð@t þ V2@yÞ2 � ðc2 � V2
2Þ@

2
y þ 2V2@ty þ @2

t

" #
;

H1;1 ¼
a2

1 þ 2a0a1 þM2
1

1�M2
1

ð@t þ V2@yÞ2 þ @2
t þ 2V2@ty � ðc2 � V2

2Þ@
2
y ;

H1;2 ¼
M2

1 � a2
1

1�M2
1

ð@t þ V2@yÞ2 � ðc2 � V2
2Þ@

2
y þ 2V2@ty þ @2

t ;
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For j P 2 :

Hj; j�1 ¼ eDj

M2
1 � a2

j�1

1�M2
1

ð@t þ V2@yÞ2 � ðc2 � V2
2Þ@

2
y þ 2V2@ty þ @2

t

" #
;

Hj; j ¼
eC jðaj �M1Þ2 þ eDjðaj�1 þM1Þ2

1�M2
1

ð@t þ V2@yÞ2 � ðc2 � V2
2Þ@

2
y þ 2V2@ty þ @2

t ;

Hj; jþ1 ¼ eCj

M2
1 � a2

j

1�M2
1

ð@t þ V2@yÞ2 � ðc2 � V2
2Þ@

2
y þ 2V2@ty þ @2

t

" #
;

eCj ¼
aj�1

aj�1 þ aj
; eDj ¼

aj

aj�1 þ aj
:

4. Reflection coefficient

4.1. Basic reflection coefficient

We consider the basic ABCs (38), (43) and derive the reflection coefficient that they generate when a plane-wave im-
pinges on the boundary CE. Since the operator used in the high-order ABC is a product of operators of the basic form (cf.
(71)), it is required that the reflection coefficient R0 of the basic ABC satisfy jR0j < 1 for all possible plane waves. In fact,
in contrast to the case with traditional low-order ABCs, in the present case it is not required that jR0j be very small, since
the high-order ABC has the effect of raising jR0j to a high power.

We take a propagating plane-wave of the form (cf. (12) and (26))
u ¼ uI þ uR ¼ exp½ixðt � KI
xx� KyyÞ� þ R0 exp½ixðt � KR

x x� KyyÞ�: ð115Þ
Here the two terms represent the incident and reflected waves, respectively, and R0 is the reflection coefficient. The same Ky

is taken for the incident and reflected waves; this must be the case so that the exponents in y can be balanced when a homo-
geneous boundary condition is imposed on CE. Note that
KI
x ¼ Kþx ; KR

x ¼ K�x ;
where Kþx and K�x are the two roots of Kx obtained from the dispersion relation; see Figs. 2(b) and 3(b). To find the relation
between KR

x and KI
x we use (14) to find
KI
x ¼

1
a11

�ða12Ky þ b1Þ þ
ffiffiffiffi
D
ph i

; KR
x ¼

1
a11

�ða12Ky þ b1Þ �
ffiffiffiffi
D
ph i

: ð116Þ
Adding these equations together yields the relation
KR
x ¼ �KI

x �
2ða12Ky þ b1Þ

a11
: ð117Þ
Now we substitute the plane-wave (115) in the basic ABC (38) to get
jR0j ¼
j � nKI

x � g0Ky þ s0j
j � nKR

x � g0Ky þ s0j
: ð118Þ
Substituting (117) in this expression as well as (40) and (41) and noting (37) yields
jR0j ¼
ja0 � aj
ja0 þ aj : ð119Þ
Since 0 < a0; a 6 1 it is obvious that jR0j < 1. This is equivalent to Higdon’s expression for jRj in the isotropic case [11] with
a ¼ cos h (h being the angle of incidence). See the discussion around Eq. (36).

If, on the other hand, we consider an incoming and reflected evanescent wave we have:
u ¼ uI þ uR ¼ exp½ixt � cþx� ik2y� þ S0 exp½ixt � c�x� ik2y�; ð120Þ
with (see (25))
c� ¼ � i
a11
ða12k2 þ b1Þ � r:
We now obtain a complex reflection coefficient:
jS0j ¼
j � ncþ � ig0k2 þ is0xj
j � nc� � ig0k2 þ is0xj

¼ 1: ð121Þ
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Thus evanescent modes are perfectly reflected. The same calculations can be carried out for the basic evanescent mode oper-
ator (43), with exactly the opposite results. In particular, denoting the reflection coefficients by eR0 and eS0 we find:
jeR0j ¼
jr0 � iaD1

ffiffiffiffiffiffiffiffiffiffiffi
a11þb2

1

p
a11

j

jr0 þ iaD1

ffiffiffiffiffiffiffiffiffiffiffi
a11þb2

1

p
a11

j
¼ 1; jeS0j ¼

jr0 � rj
jr0 þ rj < 1:
Thus, each type of operator controls the reflection coefficient for the corresponding type of mode. With an ABC which in-
cludes both types of operators, both propagating and decaying modes are controlled.

4.2. High-order reflection coefficient

Using (71), it is easy to generalize the result (119) to the high-order ABC. Analogously to (118) we assume an outgoing
propagating plane-wave and define
Rj



 

 ¼ j � nKI
x � gþj Ky þ sþj j

j � nKR
x � gþj Ky þ sþj j

: ð122Þ
Owing to (71), it is easy to see that the total reflection coefficient for the Pth-order ABC is
jRj ¼ jR0j
YP

j¼1

jRjj2: ð123Þ
As we have shown above, each factor in (123) is smaller than 1; hence jRj approaches zero exponentially fast as P is in-
creased. For example, if aj ¼ 1 for all j, (123) reduces to
jRj ¼ jR0j2Pþ1
: ð124Þ
To gain more insight, we derive this result more directly for the anisotropic wave Eq. (7) with aj ¼ 1. We consider the
recursive relations (58)–(61), with the operators (109)–(111). We assume that all the auxiliary variables /j have the
plane-wave form (cf. (115))
/j ¼ lj exp½iðxt � kI
xx� kyyÞ� þ qj exp½iðxt � kR

x x� kyyÞ�; j ¼ 0; . . . ; P þ 1: ð125Þ
Here /0 � u;l0 ¼ 1 and q0 ¼ R, which is the reflection coefficient. We denote
EI ¼
ffiffiffiffiffiffiffi
a11
p

kI
x þ

a12ffiffiffiffiffiffiffi
a11
p ky; ER ¼

ffiffiffiffiffiffiffi
a11
p

kR
x þ

a12ffiffiffiffiffiffiffi
a11
p ky:
Now we substitute (125) into (58)–(61), and without loss of generality we set x ¼ 0 as the location of CE. This yields
l0ðx� EIÞ þ q0ðx� ERÞ ¼ l1xþ q1x; ð126Þ
ljðx� EIÞ þ qjðx� ERÞ ¼ ljþ1ðxþ EIÞ þ qjþ1ðxþ ERÞ; j ¼ 1; . . . ; P; ð127Þ
lPþ1 þ qPþ1 ¼ 0: ð128Þ
It seems that there are too many unknowns in Eqs. (126)–(128). However, we can make the following argument. Eqs. (58)
and (59) can be differentiated r times with respect to x, since they hold in the entire domain DE and not only on CE. This
would introduce the coefficients ð�kI

xÞ
r and ð�kR

x Þ
r into Eqs. (126) and (127). Since these equations must hold for any r,

we must conclude that the l-terms and the q-terms in (126) and (127) are self-balanced separately. Thus, we may replace
(126)–(128) by
l0ðx� EIÞ ¼ l1x;

q0ðx� ERÞ ¼ q1x;

ljðx� EIÞ ¼ ljþ1ðxþ EIÞ; j ¼ 1; . . . ; P;

qjðx� ERÞ ¼ qjþ1ðxþ ERÞ; j ¼ 1; . . . ; P;

lPþ1 þ qPþ1 ¼ 0:
Now we use these equations recursively to calculate R:
R ¼ q0 ¼ q1
x

x� ER ¼ q2
xþ ER

x� ER

x
x� ER ¼ . . . ¼ qPþ1

xþ ER

x� ER

 !P
x

x� ER ¼ �lPþ1
xþ ER

x� ER

 !P
x

x� ER

¼ �lP
x� EI

xþ EI

xþ ER

x� ER

 !P
x

x� ER ¼ . . . ¼ �l1
x� EI

xþ EI

 !P
xþ ER

x� ER

 !P
x

x� ER ¼ �
x� EI

x� ER

x� EI

xþ EI

 !P
xþ ER

x� ER

 !P

:
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However, it is easy to show (see (116) and (117)) that EI ¼ �ER > 0. Hence we have
R ¼ � x� EI

xþ EI

 !2Pþ1

; ð129Þ
which is the desired result. It is easy to check that (122) reduces to the quantity in parentheses in (129) in the anisotropic
case with aj ¼ 1.

Similar analyses hold for products of the basic evanescent mode operators, Sj, and for outgoing evanescent modes. In par-
ticular, the reflection coefficient for a product of propagating mode operators applied to an evanescent mode has modulus
one, as does a product of evanescent mode operators applied to a propagating mode. Products of evanescent mode operators
applied to evanescent modes are also exponentially convergent with increasing order.

Note that boundary conditions based on propagating modes alone are, in fact, convergent for finite times in the isotropic
case, though this requires more subtle analysis. See [1,21]. Nonetheless, the convergence is poor for long times. For (almost)
uniform convergence in time the evanescent mode corrections are needed [20].

5. Well-posedness

5.1. Basic ABC: well-posedness via the Kreiss-criterion

The Kreiss-criterion [36] for well-posedness (which is related to stability on the continuous level) has several equivalent
versions; see, e.g., [35] and [37–40]. Roughly speaking, the Kreiss-criterion states that a problem consisting of a linear
strictly-hyperbolic equation (or a system of equations) in X, boundary conditions on C and initial conditions is well-posed
if and only if it does not admit as solutions any plane waves which spatially decay into X and grow in time. More precisely,
considering the problem in the left half-plane with boundary CE as in Fig. 4, the Kreiss-criterion looks at inadmissible solu-
tions of the form (12) which belong to two categories, i.e.,
Type-1 solutions : Im k2 ¼ 0; Im k1 < 0; Im x > 0; ð130Þ
Type-2 solutions : Im k2 ¼ 0; Im x > 0; Im x! 0; ð131Þ

a : Im k1 < 0; ð132Þ
b : Im k1 < 0; Im k1 ! 0: ð133Þ
For a differential equation which is strictly hyperbolic [35], like (1), the Kreiss-criterion gives us the following classification.
If there are no inadmissible solutions of either type-1 or type-2 then the problem is said to be strongly well-posed. In this case,
discretizations can be devised which lead to a well-behaved numerical solution in the sense of Gustafsson, Kreiss and Sun-
dström (see [35,39]). If there are no solutions of type-1 but there are possibly solutions of type-2, the problem is said to be
weakly well-posed. In this case the numerical solution may exhibit polynomial growth in time. If there exist solutions of type-
1, then the problem is ill-posed.

We consider the general wave Eq. (1) in the left half-plane, with the basic ABC (38) on CE and with given initial conditions.
We substitute the plane-wave form (12) in (1) and obtain the dispersion equation given by (13). We substitute (12) in the
ABC (38) and obtain
nk1 þ g0k2 � s0x ¼ 0: ð134Þ
Now we have to see if (13) and (134) together allow any type-1 or type-2 solutions, by checking the conditions (130)–(133).
It is convenient to write
k1 ¼ k1R þ ik1I; x ¼ xR þ ixI; ð135Þ
where the subscripts R and I stand for the real and imaginary parts, respectively. We note that for the inadmissible waves k2

is always real, by (130) and (131).
As a preparatory step, we take the real and imaginary part of the dispersion relation (13) to obtain
a11ðk2
1R � k2

1IÞ þ 2ða12k2 þ b1xRÞk1R � 2b1xIk1I þ a22k2
2 þ 2b2k2xR þ m�x2

R þx2
I ¼ 0; ð136Þ

ða11k1R þ a12k2 þ b1xRÞk1I þ ðb1k1R þ b2k2 �xRÞxI ¼ 0: ð137Þ
We also take the real and imaginary part of (134) and obtain, using the definitions (39)–(41), after simplification,
nðxRb1 þ a12k2 þ a11k1RÞ þ a0ðk2k2 � n2xRÞ ¼ 0; ð138Þ
nðxIb1 þ a11k1IÞ � a0n

2xI ¼ 0: ð139Þ
We first consider type-1 solutions, which satisfy (130). We distinguish between two cases: a0 ¼ 1 and 0 < a0 < 1. For a0 ¼ 1,
Eq. (139) gives
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 þ b2

1

q
� b1

� �
xI ¼ a11k1I: ð140Þ
The quantity in the parentheses is positive; hence we cannot have xI > 0 and k1I < 0 as (130) requires, and thus type-1 solu-
tions do not exist. If 0 < a0 < 1, then we perform the following calculation. From (138) and (139), we get, respectively,
k1R ¼
a0n

2 � b1n
a11n

xR �
a0k2 þ a12n

a11n
k2; ð141Þ

k1I ¼ �
b1 � a0n

a11
xI: ð142Þ
We use these equations to eliminate k1R and k1I in (137), which yields, after simplification
xIðk2k2 � n2xRÞð1� a2
0Þ ¼ 0: ð143Þ
For solutions of type-1 we have xI > 0 and since a0 < 1 we must conclude from (143) that
xR ¼
k2

n2 k2: ð144Þ
Using this relation in (141) yields
k1R ¼ �
a12 þ b1b2

n2 k2: ð145Þ
Substituting (142), (144) and (145) in (136) gives
Q

n2 k2
2 þ 1� a2

0

	 
 n2

a11
x2

I þ m ¼ 0; ð146Þ
where
Q ¼ ða22 þ b2
2Þða11 þ b2

1Þ � ða12 þ b1b2Þ
2
: ð147Þ
It is easy to see that Q > 0, and thus the three terms on the left side of (146) are non-negative. Clearly, (146) cannot hold,
even if m ¼ 0, since it implies xI ¼ 0 which contradicts the condition xI > 0 of a type-1 solution. Therefore, type-1 solutions
are excluded for any 0 < a0 6 1, which guarantees that the problem is at least weakly well-posed.

Now we consider type-2a solutions, which satisfy (131) and (132). Considering (140) and setting xI ¼ 0, we get k1I ¼ 0,
which contradicts the requirement k1I < 0 in (132). Thus, there is no solution of type 2a.

Finally we consider type-2b solutions. In this case (134) becomes a real equation, and thus we can write (138) as
nðxb1 þ a12k2 þ a11k1Þ þ a0ðk2k2 � n2xÞ ¼ 0: ð148Þ
Since by (131) and (133) xI approaches zero from above and k1I approaches zero from below, we deduce that the coefficients
of xI and k1I in (137) must have the same sign, namely
P � ða11k1 þ a12k2 þ b1xÞðb1k1 þ b2k2 �xÞ > 0: ð149Þ
Our goal in the following calculation is to obtain a simple expression for P and verify that P > 0 cannot be satisfied, thus
excluding type-2b solutions.

We find it convenient to define the following constants:
X1 ¼ x� b 	 k; X2 ¼ a11k1 þ a12k2 þ b1x; ð150Þ
X3 ¼ X2 � b1X1 � n2k1 þ k3k2; k3 ¼ a12 þ b1b2: ð151Þ
With this notation, (148) and (149) can be written, respectively, as
nX2 þ a0ðk2k2 � n2xÞ ¼ 0; ð152Þ
P ¼ �X1X2 > 0: ð153Þ
From (151) we get
k1 ¼
X3 � k3k2

n2 : ð154Þ
From (150) and (154) we have
x ¼ a11X1 þ b1X2 þ k2k2

n2 : ð155Þ
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Using (152) and (155) we get
X1 ¼
1

a0a11
ðn� a0b1ÞX2: ð156Þ
Eqs. (153) and (156) finally yield
P ¼ �X1X2 ¼ �
1

a0a11
ðn� a0b1ÞX2

2:
Thus P > 0 implies
a0b1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 þ b2

1

q
> 0: ð157Þ
Clearly, this cannot hold since we always have a0b1 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 þ b2

1

q
.

The conclusion from the analysis above is summarized by the following Theorem:

Theorem 5.1. Consider the general wave Eq. (1) in the left half-plane with the ABC (38) on CE, and with given initial conditions
with compact support in the left half-plane. This problem is strongly well-posed.

To analyze the basic evanescent mode conditions we simply note that the real term r0 is a lower order term which may
be neglected in the analysis of well-posedness. Thus this case may be treated as above by setting a0 ¼ 0. The analysis of type-
1 and type-2a solutions is unchanged. Considering type-2b solutions we simply note that now X2 ¼ 0 and thus P ¼ 0.

5.2. Basic ABC: energy estimates

Energy estimates constitute a well-known tool to prove uniqueness and stability of partial differential equations. In [41],
Ha-Duong and Joly showed that strong well-posedness for the hyperbolic initial-boundary value problem in the sense of Kre-
iss can be established by constructing an ‘‘energy” function which decays in time. Such an energy estimate provides a more
direct sense of stability than the Kreiss-criterion, and in fact it is stronger than the Kreiss criterion in that it leads to estimates
which are uniform in time [41]. The energy is not necessarily the physical one; it merely has to be a positive quadratic form
in u and its derivatives, and must be equal to zero if and only if u is identically zero (given zero initial conditions).

We consider the general wave Eq. (1) and define two energies, which will give us different results. The energies are:
E0ðtÞ ¼
1
2

Z
X
½ð@tuÞ2 þ aru 	 ruþ mu2�dX; ð158Þ

E1ðtÞ ¼
1
2

Z
X
½ðDtuÞ2 þ jru 	 ruþ mu2�dX: ð159Þ
Here a and j are the symmetric positive definite tensors discussed in Section 2 (see Eqs. (1)–(6)), and
Dt ¼ @t þ b 	 r: ð160Þ
Clearly, both E0ðtÞ and E1ðtÞ are legitimate energies. In Appendix B we prove the following:
dE0

dt
ðtÞ ¼

Z
C

aru 	 n� b 	 n@tu½ �@tudC; ð161Þ

dE1

dt
ðtÞ ¼

Z
C

jru 	 nDtu�
b 	 n

2
ðDtuÞ2 þ jru 	 ruþ mu2
� �� �

dC: ð162Þ
Here n is the unit outward vector normal to C. We concentrate on the east boundary CE, for which nx ¼ 1, ny ¼ 0. Then (161)
and (162) become
dE0

dt
ðtÞ ¼

Z
CE

a11@xuþ a12@yu� b1@tu
� �

@tudC; ð163Þ

dE1

dt
ðtÞ ¼

Z
CE

ðj11@xuþ j12@yuÞDtu�
b1

2
ðDtuÞ2 þ jru 	 ruþ mu2
� �� �

dC: ð164Þ
Now we check under what conditions dE0=dt 6 0 or dE1=dt 6 0 hold. We start from E0. Substituting the basic ABC (38) in
(163) we obtain
dE0

dt
ðtÞ ¼ �

Z
CE

a0

n
n2ð@tuÞ2 þ k2ð@yuÞð@tuÞ
h i

dC:
If k2 ¼ 0 then we get
dE0

dt
ðtÞ ¼ �

Z
CE

a0nð@tuÞ2 dC 6 0: ð165Þ
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This establishes the strong well-posedness and stability of the problem. The condition k2 � b2a11 � b1a12 ¼ 0 is satisfied, for
example, in the following two cases: (a) stationary anisotropic medium (b1 ¼ b2 ¼ 0); (b) convective orthotropic medium
with background flow normal to the boundary ða12 ¼ 0; b2 ¼ 0Þ.

Now we consider E1. We observe that the quantity in parentheses multiplying b1=2 in (164) is positive. We assume that
b1 P 0 from the outset, and thus the second term in the integrand of (164) is non-positive. Thus it remains to control the first
term,
dE1

dt

� �
1
ðtÞ ¼

Z
CE

j11@xuþ j12@yu
	 


DtudC: ð166Þ
Using (38) and the definition (160), we get
Dtu ¼ b1 �
n
s0

� �
@xuþ b2 �

g0

s0

� �
@yu:
Now we restrict ourselves to the case a0 ¼ 1. Simple calculation shows that
b1 �
n
s0
¼ �

ffiffiffiffiffiffiffiffi
j11
p

; b2 �
g0

s0
¼ � j12ffiffiffiffiffiffiffiffi

j11
p : ð167Þ
Hence (166) and (167) give
dE1

dt

� �
1
ðtÞ ¼ � 1ffiffiffiffiffiffiffiffi

j11
p

Z
CE

j11@xuþ j12@yu
	 
2 dC 6 0:
Thus, if a0 ¼ 1 and b1 P 0 the problem is strongly well-posed and stable.
Thus, based on the energy estimates alone we conclude that the problem is strongly well-posed in either of the following

cases:


 b1 ¼ b2 ¼ 0;

 a12 ¼ 0; b2 ¼ 0;

 a0 ¼ 1 and b1 P 0.

We believe (based on Theorem 5.1 and [41]) that these constraints are not necessary, and are the result of the limitation of
our proof. Namely, we believe that it should be possible to define an appropriate energy that would decay in time for any
parameters a; b; m and a0.

5.3. Extension to high-order ABC

The extension of the Kreiss-criterion analysis of Section 5.1 to the high-order case is immediate. In Section 5.1 we substi-
tuted the plane-wave form (12) into the wave equation and into the basic ABC, obtained algebraic equations and checked
whether these equations have solutions of type-1 or type-2. The algebraic equation for the basic ABC is (134). We can write
it in the form
Gðx; k1; k2; a0Þ ¼ 0; ð168Þ
which is exactly the form of the basic ABC (38), i.e.,
Gð�@t ; @x; @y; a0Þu ¼ 0 on CE: ð169Þ
The algebraic Eq. (168) is obtained from the Fourier transform of (169). Now, according to (71), the high-order ABC is equiv-
alent to
Gð�@t ; @x; @y; a0Þ
YP

j¼1

G2ð�@t; @x; @y; ajÞ
" #

u ¼ 0 on CE:
Thus, in the high-order case the algebraic Eq. (168) is replaced by the equation
Gðx; k1; k2; a0Þ
YP

j¼1

G2ðx; k1; k2; ajÞ
" #

¼ 0: ð170Þ
At least one factor in (170) must vanish, for a certain aj; j 2 f0; . . . ; Pg. We denote this aj by a�, and thus we have
Gðx; k1; k2; a�Þ ¼ 0;
which has exactly the same form as (168). In this light, the Kreiss analysis of Section 5.1 remains unchanged, and the con-
clusion from this analysis thus holds in the high-order case. Therefore, we have the following.
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Theorem 5.2. Consider the general wave Eq. (1) in the left half-plane with the Pth-order ABC on CE given by (58)–(61) or (71) or
(72)–(74) , and with given initial conditions with compact support in the left half-plane. This problem is strongly well-posed.

Extending the energy estimates of Section 5.2 to the high-order case is much more difficult. For the classical wave equa-
tion and a class of high-order conditions, energy estimates were derived by Ha-Duong and Joly [41]. Analogous treatment of
the general wave Eq. (1) seems more complicated and will not be treated here.

6. Finite element formulation

For simplicity of the presentation we shall consider here only the Finite Element (FE) formulation for the anisotropic wave
equation and restrict ourselves to boundary operators based on propagating modes only. The numerical experiments in the
next section are based on this formulation.

We consider the wave Eq. (7) in a rectangular finite domain X (see Fig. 1), and the ABC on CE given by (112) and (103)–
(108), with the special definition (113) for c ¼ ce. To allow us to concentrate on the single artificial boundary CE and avoid the
issue of corner conditions for the /j, we assume (artificially) that on the west boundary CW the boundary condition u ¼ 0 is
given, and that on the north and south boundaries homogeneous natural (in the variational sense) boundary conditions are
prescribed for u and for all the /j. Initial conditions are given for u as in (10), and zero initial conditions are prescribed for the
/j, as in (48).

We define the space S by
S ¼ fwjw 2 H1ðXÞ and w ¼ 0 on CWg;
H1 being the Sobolev space of functions in L2 with first derivatives in L2. Then the weak form of the problem is:
Find u 2 S and /j 2 H1ðCEÞ such that for all w 2 S and all wj 2 H1ðCEÞ there holds
Z

X
w@2

t udXþ a0
ffiffiffiffiffiffiffi
a11
p Z

CE

w@tudCþ
Z

X
$w 	 a$udX ¼ a0

ffiffiffiffiffiffiffi
a11
p Z

CE

w@t/1 dC; ð171Þ

For j ¼ 1; . . . ; P :

lj; j�1

Z
CE

wj@
2
t /j�1 dCþ lj j

Z
CE

wj@
2
t /j dCþ lj; jþ1

Z
CE

wj@
2
t /jþ1 dC

þ c2 mj; j�1

Z
CE

@ywj@y/j�1 dCþmj; j

Z
CE

@ywj@y/j dCþmj; jþ1

Z
CE

@ywj@y/jþ1 dC
� �

¼ 0; ð172Þ
and the initial conditions are satisfied. In these equations one should take /0 ¼ u on CE and /Pþ1 ¼ 0, according to (104).
The standard spatial Galerkin FE discretization of (171) and (172) is employed. On the global-level, the variables u and /j

are replaced by their finite-dimensional approximations
uhðx; tÞ ¼
XNh;X

A¼1

dh
AðtÞNAðxÞ; x 2 X; /h

j ðy; tÞ ¼
XNh;CE

A¼1

/h
jAðtÞN

ðjÞ
A ðyÞ; y 2 CE: ð173Þ
Here h is the mesh parameter, the index A stands for a global node number, NA is the global-level shape function associated
with the variable uh and node A, and NðjÞA is the global-level shape function associated with variable /h

j and node A. Note that
while NA is a function defined in two dimensions (i.e., NAðx; yÞ), the function NðjÞA is one-dimensional (i.e., NðjÞA ðyÞ). The expan-
sion analogous to this on the element-level is
ueðx; tÞ ¼
XNen

a¼1

de
aðtÞNaðxÞ; x 2 Xe; /e

j ðy; tÞ ¼
XNen

a¼1

/e
jaðtÞN

ðjÞ
a ðyÞ; y 2 Ce

E: ð174Þ
Here Xe is the domain of element e;Ce
E ¼ CE \ @Xe;Na is the element shape function associated with uh and element node

a;NðjÞa is the element shape function associated with /h
j and element node a; de

a is the nodal value of ue at node a of element
e;/e

ja is the nodal value of /e
j at node a of element e, and Nen is the number of element nodes. Similar expansions are used for

the weight functions w and wj.
In principle, different shape functions Na and NðjÞa may be chosen for the different variables u and /j, for j ¼ 0;1; . . . ; P. We

use bilinear or linear shape functions for all the variables, which is a most convenient choice and turns out to be stable. See
[22] for discussion on the computational aspects of this choice. In the sequel we shall continue to indicate the variable num-
ber j for generality.

Using the approximations (173) in the weak Eqs. (171) and (172) leads to the following system of linear ordinary differ-
ential equations in time:
M€dþ C _dþ Kd ¼ G _/1; ð175Þ

For j ¼ 1; . . . ; P : Aj
€/j�1 þ Bj

€/j þ Dj
€/jþ1 þ Ej/j�1 þ Hj/j þ Ij/jþ1 ¼ 0; ð176Þ
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/0 � djCE
; /Pþ1 ¼ 0; ð177Þ
with the initial conditions
dð0Þ ¼ d0;
_dð0Þ ¼ v0; /jð0Þ ¼ 0; j ¼ 1; . . . ; P: ð178Þ
Here a dot indicates differentiation with respect to time. The d and /j are the vectors whose entries are the unknown nodal
values of u in X and of /j on CE, respectively. The first equation in (177) means that the entries of the vector /0 are equal to
the entries of d for all the nodes on the boundary CE. The element-level expressions for the arrays appearing in (175) and
(176) may easily be deduced from (171) and (172):
Me
ab ¼

Z
Xe

NaNb dX; Ce
ab ¼ a0

ffiffiffiffiffiffiffi
a11
p Z

Ce
E

NaNb dC; ð179Þ

Ke
ab ¼

Z
Xe

$Na 	 a$Nb dX; Ge
ab ¼ a0

ffiffiffiffiffiffiffi
a11
p Z

Ce
E

NaNð1Þb dC;

ðAe
j Þab ¼ lj; j�1

Z
Ce

E

NðjÞa Nðj�1Þ
b dC; ðBe

j Þab ¼ lj; j

Z
Ce

E

NðjÞa NðjÞb dC;

ðDe
j Þab ¼ lj; jþ1

Z
Ce

E

NðjÞa Nðjþ1Þ
b dC; ðEe

j Þab ¼ c2mj; j�1

Z
Ce

E

@yNðjÞa @yNðj�1Þ
b dC;

ðHe
j Þab ¼ c2mj; j

Z
Ce

E

@yNðjÞa @yNðjÞb dC; ðIe
j Þab ¼ c2mj; jþ1

Z
Ce

E

@yNðjÞa @yNðjþ1Þ
b dC: ð180Þ
The global arrays appearing in (175) and (176) are obtained by the usual FE assembly process from the element arrays (179)
and (180).

If all the shape functions NðjÞa are chosen to be identical, i.e., NðjÞa ¼ Na, and if in addition these boundary shape functions
coincide with the trace of the domain shape functions Na, then it is clear that many element matrices in (179) and (180)
become identical up to a scaling factor. In fact, the matrices Ce, Ge, Ae, Be and De all become factors of the ‘‘boundary mass
matrix”

R
Ce

E
NaNb dC, and the matrices Ee;He and Ie all become factors of the ‘‘boundary stiffness matrix”

R
Ce

E
@yNa@yNb dC. Thus

the calculation of the boundary element arrays becomes very efficient.
We choose to solve the semi-discrete system of equations consisting of (175)–(178) by standard Newmark time-stepping

[42]. We solve all the interior equations explicitly, by diagonalizing the mass matrix via lumping, and all the equations asso-
ciated with degrees of freedom on CE implicitly. The reason for the implicit treatment of the time-integration on CE is the lack
of ‘safe’ mass lumping procedures for the non-standard ABC equations. More details on the time-integration scheme and
other computational aspects can be found in [23].

7. Numerical experiments

In this section we present the results of some numerical experiments for the anisotropic wave Eq. (7), based on the
FE formulation described in the previous section. As shown, this C0 ‘primary-type’ FE formulation allows the use of stan-
dard FEs with explicit time-integration in the interior of X. Unfortunately, such formulation is not possible with the con-
vective wave equation, due to the appearance of mixed space–time derivatives. The latter would give rise to a
nonsymmetric non-diagonal matrix C in the semi-discrete system of ODEs (175). In the absence of known ‘safe’ lumping
techniques for nonsymmetric matrices, this would force us to make the whole scheme implicit in time. One-way to cir-
cumvent this difficulty is to use special FE spaces and mixed formulations; see., e.g., [43,44]. Resolving this matter is
beyond the scope of this paper, and hence our numerical examples will not include convection and will concentrate
on anisotropy.

The anisotropic problem can be illustrated using the setup shown in Fig. 5. The medium can be thought of as composed of
unidirectional ‘‘fibers” embedded in an ‘‘environment” which is much softer, and thus possesses a much smaller wave speed.
Two angles, measured with respect to the x direction (i.e., the direction normal to the boundary CE) play a role in this sce-
nario: the wave incidence angle h and the angle of inclination of the fibers, hf . The two principal values of the tensor a are aP1

and aP2 , which are the squares of the wave-speeds in the fiber direction and normal to the fibers. The components of a in the
ðx; yÞ directions can be obtained from the principal values via the transformation
a11

a12

a12

8><>:
9>=>; ¼

cos2 hf sin2 hf

sin2 hf cos2 hf

� sin hf cos hf sin hf cos hf

264
375 aP1

aP2

� �
: ð181Þ
Naturally we will be interested to see how the high-order ABC performs in the presence of a mismatch between the direc-
tions of phase and group velocities. We recall that in the anisotropic case the condition for such mismatch is given by (21).
For a symmetric configuration of geometry and initial conditions, this mismatch condition becomes



θ f

P1

P2

y

θ Γ
E

x

Fig. 5. Setup for the anisotropic case; the angle of incidence h and the angle of inclination of the ‘‘fibers” hf .
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a12 – 0 and jhj > hcr � tan�1 a11

ja12j

� �
: ð182Þ
We can ask the following question: Given aP1 and aP2 , what is the fiber angle �hf that gives a minimal hcr? This would be the
fiber angle associated with the largest phase-group mismatch possible, and would thus represent the ‘‘worst-case scenario.”
By substituting in (182) a11 and a12 given by (181), differentiating the result with respect to hf and equating to zero, we fi-
nally find
cos �hf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aP2

aP1 þ aP2

s
: ð183Þ
Our numerical experiments are based on the following model. The computational domain X is a rectangle of dimensions
5� 38. The support of the initial conditions is a rectangle of dimensions 4� 3, whose left edge is located at the center of the
west boundary CW . Thus, at time t ¼ 0 the initial wave is at a distance 1 from CE and at a distance 17.5 from the south and
north boundaries CS and CN . The domain is designed such that waves do not reach CS and CN at all during the simulation;
this allows us to concentrate on the performance of the ABC on CE. In the initial support, the function @tuðx; y;0Þ is zero, while
the function uðx; y;0Þ is a cross product of unit Hermite cubic ‘‘bells” in the x and y directions. (A unit Hermite cubic bell is a
function that rises cubically from zero at point A to 1 at point B and then falls cubically back to zero at point C, while main-
taining zero slopes at points A, B and C.) On CW we prescribe the boundary condition u ¼ 0 which is consistent with the ini-
tial condition.

We take a mesh of 50� 380 ¼ 19;000 square finite elements. We use bilinear shape functions for u and linear shape func-
tions for all the /j on CE. Thus we have 381 nodal points on the boundary CE. We take a time-step size of Dt ¼ 0:025. On CE

we use the high-order ABC with various orders P and with aj ¼ 1 for all j ¼ 1; . . . ; P.
To calculate errors, we shall need a reference solution. To this end we calculate the solution in a reference domain Xref

which is much longer in the x direction than the original domain, i.e., of size 13:5� 38. We use 135� 380 ¼ 51;300 elements
in the reference model. The element size and time-step size are the same as in the original discretization. By doing 600 time-
steps per simulation we ensure that waves reflected from the far east boundary of Xref will not pollute the solution on CE and
in X. (We comment that in another set of experiments we let our code run for a much longer time, and verified that the
scheme was stable.) We calculate the error e by
eðx; tÞ ¼ uhPðx; tÞ � uh
ref ðx; tÞ; x 2 X; ð184Þ
where uhP is the computed solution in X using an ABC of order P, and uh
ref is the restriction of the reference solution in X.

We relate here to the results of 11 simulations, whose parameters are summarized in Table 1. The ratio between the two
principal wave speed squares in the simulation sets 0.#, 1.# and 2.# is 1 (isotropic), 2 and 10, respectively. Run 0.1 represents
the isotropic case, Runs 1.1 and 2.1 represent the orthotropic case in which a12 ¼ 0, and in all the other runs a12 – 0.

We remark that although in the orthotropic case simple coordinate transformation can reduce the wave equation to the
isotropic one, we relate to this case here for two reasons. First, owing to the fact that in the orthotropic case there is never
phase-group velocity mismatch (see (21)), this allows us to compare the various cases and check to what extent the accuracy
is sensitive to the presence of such mismatch. Second, in thinking about future extension of the scheme to inhomogeneous
media, it may well be the case that the medium will be orthotropic in one region and non-orthotropic in another.

Fig. 6 shows the variation in time of five sample reference solutions at point x ¼ 5; y ¼ 19 located at the center of the
boundary CE. Fig. 7 shows the errors, obtained with ABC order P ¼ 4, corresponding to these five solutions. The strongly
anisotropic case of Runs 2.1 and 2.3 where aP2=aP1 ¼ 10 generates a higher error than the isotropic case and the case
aP1=aP2 ¼ 2. The deviation from orthotropy (namely the value of a12) seems to affect the error at this location much less.



Table 1
Parameters of simulations of wave propagation in an anisotropic medium.

Run aP1 aP2
�hf hf a11 a22 a12 hcr

0.1 1 1 – – 1 1 0 –

1.1 1 0.5 54.7� 0� 1 0.5 0 –
1.2 30� 0.875 0.625 �0.217 76.1�
1.3 60� 0.625 0.875 �0.217 70.9�

2.1 0.1 1 17.5� 0� 0.1 1 0 –
2.2 15� 0.160 0.940 0.225 35.5�
2.3 20� 0.205 0.895 0.289 35.4�
2.4 40� 0.472 0.628 0.443 46.8�
2.5 60� 0.775 0.325 0.390 63.3�
2.6 75� 0.940 0.160 0.225 76.5�
2.7 90� 1 0.1 0 –
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Fig. 8 demonstrates what happens if the artificial boundary is treated while paying no attention to the anisotropy (and
thus to the entire issue of phase-group velocity mismatch). Thus, we use (112) with a12 ¼ 0 and c2

e ¼ a11 instead of the def-
inition (113). The errors for Run 2.3 are shown using the correct anisotropic ABC and an ‘isotropic’ ABC, with P ¼ 4. It is clear
that the errors generated by the latter are an order of magnitude larger. Moreover, it can be shown that if we take this incor-

rect ABC with aj < ja12j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11a22 � a2

12

q
then the problem becomes only weakly well-posed. This is in contrast to the strong

well-posedness that Theorem 5.1 promises us for the correct ABC. (This weak instability of the incorrect ABC was not ob-
served numerically, however. Only poor accuracy, as in Fig. 8, was observed in practice.)
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Fig. 6. Reference solutions at point x ¼ 5; y ¼ 19 (middle of CE) as a function of time, for various sets of parameters, as described in Table 1.
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Fig. 7. Errors obtained with ABC order P ¼ 4, at point x ¼ 5; y ¼ 19 (middle of CE) as a function of time, corresponding to the solutions shown in Fig. 6.
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Fig. 8. Errors generated for Run 2.3 at point x ¼ 5; y ¼ 19 (middle of CE) as a function of time, using the correct ABC and an ‘isotropic’ ABC. In both cases,
P ¼ 4.
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Fig. 9. Error (in the L2 and max norm) as a function of the ABC order P for Runs 1.1 and 1.2, as described in Table 1.
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Fig. 10. Error (in the L2 and max norm) for ABC order P ¼ 4 as a function of the fiber angle hf for Runs 2.#, as described in Table 1.
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Fig. 12. Same as Fig. 11, but for Run 1.1 (orthotropic) as described in Table 1.

Fig. 11. Snapshots of computed solution with P ¼ 4 (top) and reference solution (bottom) at times (from left to right) t ¼ 0; t ¼ 5; t ¼ 10 and t ¼ 15, for Run
0.1 (isotropic) as described in Table 1.
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Fig. 13. Same as Fig. 11, but for Run 2.2 (strongly anisotropic) as described in Table 1.

Fig. 14. Snapshots of errors corresponding to the solutions shown in Fig. 13 (i.e., for Run 2.2, with P ¼ 4), at times t ¼ 5; t ¼ 10 and t ¼ 15.
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Fig. 9 shows the error in two norms – the L2 norm and the maximum norm – as a function of the ABC error P, for Run 1.1 and
Run 1.2 as described in Table 1. Initially the error decreases fast with P, but beyond P ¼ 4 decreasing P further does not im-
prove the accuracy significantly. The reason is that beyond P ¼ 4 the time and space discretization errors start to dominate;
see discussion in [23]. In fact, the use of low-order finite elements and time-integration schemes puts severe limits on the
effective range of orders P. This difficulty may be alleviated by using high-order spectral elements and time discretization,
as was demonstrated in [45], or high-order finite difference discretization in space and time, as was done in [19] and [23].

With P ¼ 4, Fig. 10 shows the error norm values as a function of the Runs 2.#, whose parameters are described in Table 1.
There is a significant variation in the error for the different fiber angles. However, it is interesting to note that this variation is
not correlated with the mismatch of phase-speed and group-speed directions; see (182) and (183). In particular, since for
Runs 2.# we have �hf ¼ 17:5� (see Table 1), one would perhaps expect that Run 2.2 with hf ¼ 15� and Run 2.3 with
hf ¼ 20� would generate the largest errors, which is clearly not the case according to Fig. 10. Thus, as expected, the high-or-
der ABC described in this paper is not sensitive to phase-group mismatch.

Figs. 10–12 show snapshots of computed solution with P ¼ 4 (top) and reference solution (bottom) at times
t ¼ 0; t ¼ 5; t ¼ 10 and t ¼ 15, for Run 0.1 (isotropic; Fig. 11), Run 1.1 (orthotropic; Fig. 12) and Run 2.2 (strongly anisotropic;
Fig. 13). The reference solutions are shown in a domain which is twice as long as the computational domain X, but is shorter
than the actual reference domain used. In all cases the agreement between the reference and computed solutions is excellent
and no spurious reflection is observed.

Fig. 14 shows snapshots of the error e corresponding to the solutions shown in Fig. 13 (i.e., for Run 2.2, with P ¼ 4). The
error is globally small, and is distributed so that the largest error values are obtained where the wave front crosses the arti-
ficial boundary, as can be observed in Fig. 13.

8. Concluding remarks

In this paper we have shown how to extend the high-order Hagstrom–Warburton Absorbing Boundary Condition (ABC) to
a general scalar linear time-dependent wave equation which represents acoustic wave propagation in anisotropic, convec-
tive and dispersive media. We proved that the reflection coefficient of this ABC decreases exponentially fast with increasing
order P of the ABC, and that the problem is strongly well-posed. We also showed how to incorporate this ABC, for the aniso-
tropic wave equation, in a finite element formulation. Of course, the high-order ABC can be used with other discretization
methods as well.

Topics that were not dealt with here and are worth attention are, among others, developing corner conditions for the aux-
iliary variables (as was done for the isotropic case in [6] and [22]), accounting for various physical boundary conditions at the
edges of the artificial boundary (in a wave-guide or half-space configuration), the extension to three dimensions, and fully
developing and testing conditions which account for evanescent waves (as we have done in [20,23] for the isotropic wave
equation). Concerning the last point, we remark that the ABC as tested, despite the fact that it is designed for propagating
waves, is still guaranteed to be stable, and it will converge. Of course, the convergence for long time simulations might
be rather slow, and it would be much more effective, as was shown in [20,23] to include the evanescent mode corrections.

Another important extension would be to inhomogeneous media, namely wave equations with varying coefficients. This
was done in the isotropic stationary case in [23], for both layered and continuously stratified media. We believe that a similar
extension can also be applied to the general wave equation considered here.

The importance of the present investigation, among other reasons, stems from its being a first step is extending our for-
mulation to anisotropic elasticity, which is an important application in solid-earth geophysics. The elastic case is much more
complicated than the scalar case. This is not merely a technical matter; in [31] Bécache et al. show for the PML that there are
stability difficulties in the elastic case which do not exist in the acoustic case. We believe that similar difficulties apply to ABC
methods. Due to the difference in methodologies, it is certainly worthwhile to study the extension of the high-order ABCs to
elastodynamics.
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Appendix A. Proof that the auxiliary variables satisfy the wave equation

We consider the general wave Eq. (1) for u. Given the recursive relations (58) and (59) and the initial conditions (48) for
the auxiliary variables /j, we wish to prove that each of the /j satisfies the same wave Eq. (1) that u satisfies, i.e.,
L/j � ða11@
2
x þ 2a12@xy þ a22@

2
y � @

2
t � 2b1@tx � 2b2@ty � mÞ/j ¼ 0 in DE; ðA:1Þ
for j ¼ 1; . . . ; P þ 1. We prove this by induction.
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First we prove that L/1 ¼ 0. To this end, we apply the wave operator L to both sides of (58) to obtain
LBþ0 u ¼ LB�0/1 in DE:
Since Lu ¼ 0 and since L commutes with each of Bþ0 and B�0, we have
0 ¼ Bþ0Lu ¼ LBþ0 u ¼ LB�0/1 ¼ B�0L/1:
Denoting w1 ¼ L/1 we thus have B�0w1 ¼ 0. From the definition (64) of B�0 this means
ðg�0@y þ s�0@tÞw1 ¼ 0 in DE:
This is a one-way wave equation in the y direction. Its solution has the form
w1ðx; y; tÞ ¼ f ðx; y� ðg�0=s�0ÞtÞ; ðA:2Þ
for a general function f. (Note that s�0 > 0 from (70).) From (48), w1ðx; y;0Þ � 0, and we deduce from (A.2) that f ðx; yÞ � 0 in DE.
Therefore, w1 � 0 which means L/1 � 0 in DE.

Now we assume that L/j ¼ 0 in DE and we wish to prove that L/jþ1 ¼ 0 in DE. From (59) we have
0 ¼ Bþj L/j ¼ LBþj /j ¼ LB�j /jþ1 ¼ B�j L/jþ1:
Denoting wjþ1 ¼ L/jþ1 we thus have B�j wjþ1 ¼ 0. From the definition (63) of B�j this means
ð�n@x þ g�j @y þ s�j @tÞwjþ1 ¼ 0 in DE: ðA:3Þ
Denoting Cx ¼ n=s�j > 0 and Cy ¼ g�j =s�j , (A.3) can be written as
ð�Cx@x þ Cy@y þ @tÞ wjþ1 ¼ 0 in DE: ðA:4Þ
This is a one-way wave equation in the direction ð�Cx; CyÞ, which is a vector pointing out of DE towards CE (incoming char-
acteristic with respect to X); see Fig. 4. Eq. (A.4) can be written as
ð�Cs@s þ @tÞwjþ1 ¼ 0 in DE;
where Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

x þ C2
y

q
and s P 0 is the coordinate pointing away from CE into DE in the outgoing direction �ð�Cx;CyÞ. The

solution of this equation is in the form
wjþ1ðr; s; tÞ ¼ f ðr; sþ CstÞ; ðA:5Þ
for a general function f, where r the coordinate normal to s. From (48), wjþ1ðx; y;0Þ � 0, and we deduce from (A.5) that
f ðr; sÞ � 0 in DE for all s P 0. Therefore wjþ1 � 0 which means L/jþ1 � 0 in DE.

This completes the proof.

Appendix B. Derivation of boundary expression for the energy rate

We start from the definition of the energy E0 in (158), and calculate the time rate of this energy:
dE0

dt
¼
Z

X
ð@tuÞð@2

t uÞ þ aru 	 @truþ mu@tu
� �

dX ¼
Z

X
@tuðr 	 aru� 2b 	 @tru� muÞ þ aru 	 @truþ mu@tu½ �dX

¼
Z

C
ð@tuÞaru 	 ndC�

Z
X

b 	 rðð@tuÞ2ÞdX ¼
Z

C
aru 	 n� b 	 n@tu½ �@tudC:
The first equality is obtained by differentiating with time the integrand in (158), the second equality is obtained by using the
wave Eq. (1) to express @2

t u, the third equality is obtained by ‘‘integration by parts” (namely applying Green’s identity) to the
first term with a, and the last equality is obtained by applying the divergence theorem to the term with b. This calculation
proves (161), which is what we wanted to show.

Now we consider the energy E1 in (159). We denote 2e the integrand in (159) and thus
E1 ¼
Z

X
edX: ðB:1Þ
We note that the wave Eq. (1) can we written as
Lu � r 	 jru� ðD2
t uþ muÞ ¼ 0; ðB:2Þ
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where Dt is defined by (160). Then we calculate:
dE1

dt
¼
Z

X
@tedX ¼

Z
X

Dte� b 	 reð ÞdX ¼
Z

X
DtedX�

Z
C

eb 	 ndC ¼
Z

X

1
2

Dt ðDtuÞ2 þ jru 	 ruþ mu2
h i

dX�
Z

C
eb 	 ndC

¼
Z

X
½DtuD2

t uþ jrDtu 	 ruþ muDtu�dX�
Z

C
eb 	 ndC ¼

Z
X
r 	 jruDtuþ jru 	 rDtu½ �dX�

Z
C

eb 	 ndC

¼
Z

C
jru 	 nDtudC�

Z
C

eb 	 ndC ¼
Z

C
jru 	 nDtu�

b 	 n
2
ððDtuÞ2 þ jru 	 ruþ mu2Þ

� �
dC:
The eight equalities above are obtained, respectively, from (i) Eq. (B.1), (ii) the definition of Dt , (iii) the divergence theorem,
(iv) the definition of e, (v) applying the Dt derivative, (vi) Eq. (B.2), (vii) the divergence theorem, and (viii) the definition of e.
The end result is exactly (162), which is what we wanted to show.
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